Исследование кинетики электронно-возбужденного молекулярного азота в атмосферах планет Солнечной системы

Кириллов А.С.

Полярный геофизический институт, Апатиты

Скорости ионообразования в атмосферах Титана и Земли

Galand et al., 2014, Titan: Interior, Surface, Atmosphere and Space Environment, Chap.11, Baker et al., 2012, EOS, v.93, p.325-326

XUV solar radiation with a SZA of 91° (thick, solid line); magnetospheric electrons (thin, solid line); magnetospheric protons (dashed lines); magnetospheric oxygen ions (squares); galactic cosmic rays (circles).

Внешний радиационный пояс Земли – источник высыпающихся релятивистских электронов. Магнитосферные электроны с энергией в десятки кэВ ускоряются до релятивистских энергий (> 1 МэВ) во внешнем радиационном поясе Земли в течение десятков часов.

Свечение окиси углерода в атмосфере Титана

Lellouch et al., 2003, Icarus, 162, p.125. Lopez-Valverde et al., 2005, Icarus, 175, p.503.

Зарегистрированы ИК эмиссии окиси углерода в атмосфере Титана в среднем инфракрасном диапазоне с помощью спектрометра ISAAC на Very Large Telescope (Чили), охватывающим диапазон 4.50–4.85 мкм. Обнаружено около 45 линий излучения, совпадающих с вращательноколебательными линиями CO, включая CO(1–0) (P18–R11) и CO(2–1) (P11–R11).

Non-LTE Model была использована для анализа колебательной кинетики ¹²CO(1), ¹²CO(2), N₂(1), ¹³CO(1), ¹³CO(2). В модель включено прямое поглощение солнечного излучения на длине волны 4.7 мкм в основной полосе (1–0) и в первой полосе (2–1) обоих изотопов CO, а также в переходах (2–0) на длине волны 2.3 мкм.

Non-LTE Model обеспечивает разумное согласие по эмиссии (1–0), но не согласуется по эмиссии (2–1), то есть занижает результаты в ~2 раза.

Рассчитанные константы гашения $N_2(A,v=0-10) + CO(X,v=0) \rightarrow N_2(X,v\geq 0) + CO(a,v')$ $N_2(A,v=0-10) + N_2(X,v=0) \rightarrow N_2(X,v\geq 0) + N_2(A,v'<v)$ Kirillov [Chem. Phys. Lett., 2016, 643, p.131] с помощью Rosen-Zener приближения.

REVIEWER #1:

The case is not made for $N_2(A)$ -CO collisions to be important in planetary studies.

The author could consider whether the paper "Carbon monoxide fluorescence from Titan's atmosphere", M.A. López-Valverde et al., 2005, ICARUS, 175, p.503 is appropriate for this.

Рассчитанные колебательные населенности N₂(A³Σ_u⁺,v) и СО(а³П,v) на высотах верхней атмосферы Титана

Kirillov et al., 2017, Chem. Phys. Lett., v.685, p.95

Рассчитанные скорости образования радикалов C₂H, C₂H₃, CH₃, C₂H₅ на высотах 50-250 км при столкновениях N₂(A) и N₂(B,W,B',C) с молекулами C₂H₂, C₂H₄, CH₄, C₂H₆

 $N_2(A^3\Sigma_u^+) + C_2H_2 \rightarrow N_2(X^1\Sigma_g^+) + C_2H + H$, products $k=1.4\cdot10^{-10} \text{ cm}^3\text{s}^{-1}$, Umemoto (2007), Dutuit et al. (2013) $N_2(A^3\Sigma_u^+) + C_2H_4 \rightarrow N_2(X^1\Sigma_g^+) + C_2H_3 + H$, products $k=0.97\cdot10^{-10} \text{ cm}^3\text{s}^{-1}$, Umemoto (2007), Dutuit et al. (2013)

$$N_{2}(A) + C_{x}H_{y} -$$

$$N_{2}(B,W,B',C) + C_{x}H_{y} -$$

$$e + C_{x}H_{y} - \Delta$$

Профили N₂, CH₄, CO концентраций в верхних атмосферах Титана, Плутона, Тритона

[CO]=5·10⁻⁵·([N₂]+[CH₄]) согласно [Fabiano et al., 2017, ICARUS, v.293, p.119] Профили N_2 и CH_4 концентраций согласно [Gladstone et al., 2016, SCIENCE, v.351, aad8866].

[CO]=5·10⁻⁴·([N₂]+[CH₄]) согласно [Lellouch et al., 2017, ICARUS, v.286, p.289]. Профили N_2 и CH_4 концентраций согласно [Krasnopolsky and Cruikshank, 1995, J. Geophys. Res. - E, v.100, p.21271].

[CO]=6·10⁻⁴·([N₂]+[CH₄]) согласно [Strobel and Zhu, 2017, ICARUS, v.291, p.55].

Рассчитанные колебательные населенности N₂(A³Σ_u⁺,v) и СО(а³П,v) на высотах верхних атмосфер Тритона и Плутона

Кириллов, 2020, Астрон. Вестник, т.54, с.33

Переходы между состояниями В и А с излучением красных и инфракрасных полос молекулярного азота

Переходы с Δv = v'(B)-v"(A) = 2, 3, 4. Экспериментальные данные свечения полос первой положительной системы N₂ согласно Vallance Jones, Aurora, 1974.

Вклад метестабильного N2 в свечение зеленой линии О

УФ спектры N_2 в дневном свечении атмосферы Земли (Discovery, STS-39) [Budzien et al., 1994, J. Geophys. Res. -A, v.99, p.23275]

557.7 nm

 ^{1}D

Sharp et al., 1979, J. Geophys. Res., 84, p.1977

Расчеты [Кириллов и Аладьев, 1998, Косм. Иссл., т.36, с.451] констант скоростей с помощью приближения Ландау-Зинера показали, что константа для *v*=0 в несколько раз превосходит значения констант для *v*>0.

Константы скоростей взаимодействия для N₂(A,B,W,B') + N₂ столкновений

Kirillov, 2004, Adv. Space Res, v.33, p.998 Kirillov, 2010, Ann. Geophys., v.28, p.181 Kirillov, 2011, J. Quan. Spec. Rad. Tran., v.112, p.2164 Kirillov, 2016, Chem. Phys. Lett., v.643, p.131

Константы скоростей взаимодействия для N₂(C) + N₂ столкновений

Kirillov, 2019, Chem. Phys. Lett., v.715, p.263

Intermolecular electron energy transfer processes: $N_2(C^3\Pi_u, v=0-4) + N_2(X^1\Sigma_g^+, v^*=0) \rightarrow N_2(X^1\Sigma_g^+, v''\geq 0) + N_2(C^3\Pi_u, v'< v)$, (1) $N_2(C^3\Pi_u, v=0-4) + N_2(X^1\Sigma_g^+, v^*=0) \rightarrow N_2(X^1\Sigma_g^+, v''\geq 0) + N_2(Y, v')$, (2)

Сравнение результатов расчета с экспериментальными данными Dilecce et al. [2006, Chem. Phys. Lett., v.431, p.241] (● и ▲): а – для процесса (1),

б – для процесса (2). Вклад Y = В³Π_α (0), W³Δ_u (– – –), В'³Σ_u⁻ (- - -)

1000			
10	h I	0	
10			
_			

The calculated total quenching rate coefficients of the $C^{3}\Pi_{u}$ state are compared with experimental data [10,12–20] (in 10^{-11} cm³ s⁻¹).

v = 0	v = 1	v = 2	v = 3	v = 4	References
1.06	2.66	4.37	6.27	4.86	This work
1.14 ± 0.12	3.14 ± 0.21	4.28 ± 0.21	6.34 ± 0.27	9.86 ± 0.46	Dilecce et al. [10]
1.0 ± 0.2	2.3 ± 0.3	3.0 ± 0.5	3.5 ± 0.7	-	Brocklehurst and Downing [12
1.1 ± 0.1	2.2 ± 0.8	3.1 ± 0.7	-	-	Calo and Axtmann [13]
1.0 ± 0.1	2.6 ± 0.2	-	-	-	Millet et al. [14]
1.09 ± 0.11	2.53 ± 0.25	4.13 ± 0.41	4.28 ± 0.43	-	Chen et al. [15]
3.2 ± 0.3	-	-	-	8.8 ± 0.9	Becker et al. [16]
1.5	3.7	8	-	-	Urosevic et al. [17]
-	3.3 ± 0.4	6.3 ± 0.8	8 ± 2	-	Gat et al. [18]
1.3 ± 0.2	2.9 ± 0.3	4.6 ± 0.6	4.3 ± 0.6	-	Pancheshnyi et al. [19]
-	2.9 ± 0.4	4.3 ± 0.6	4.8 ± 0.8	4.9 ± 0.9	Simek et al. [20]

Константы скоростей взаимодействия для N₂(A) + O₂, СО столкновений

Kirillov, 2016, Chem. Phys. Lett., v.715, p.263 Kirillov, Belakhovsky, 2021, J. Geophys. Res.: Atmosphere, v.126, e2020JD033177

Высотные профили скорости ионообразования и рассчитанных интесивностей полос 337, 669, 749 нм N₂ для *E*=10 кэВ, 100 кэВ, 1 МэВ, 10 МэВ

Kirillov, Belakhovsky, 2019, Geophys. Res. Lett., v.46, p.7734

Высотные профили рассчитанных интесивностей полос 762 нм O₂(b¹Σ_g⁺) и 1.27 мкм O₂(a¹Δ_g) для *E*=40, 100, 400 кэВ и 1, 4, 10 МэВ

Kirillov, Belakhovsky, 2021, J.Geophys. Res.: Atmosphere, v.126, e2020JD033177

N₂ полосы в спектре свечения средней атмосферы Земли во время спрайтов

A large sprite over France [Marskar, 2024, PSST, 33, 025034]

The red spectra of sprites by Kanmae et al., 2007, Geophys. Res. Lett., v.34, L07810

The blue spectrum of sprite by Heavner et al., 2010, J. Geophys. Res. - A, v.115, A00E44

Примеры рассчитанных концентраций синглетного кислорода O₂(a¹Δ_g,v=0-2) и O₂(b¹Σ_g⁺,v=0-2) на высоте 70 км средней атмосферы Земли во время спрайтов

Vibrational levels

Вклад прямого возбуждения е + O₂ (- - -), от состояний А³Σ_u⁺(---), В³Π_g(----), W³Δ_u (----), В'³Σ_u⁻(----), C³Π_u(----)

Вклад состояния b¹ Σ_{g}^{+} в возбуждение a¹ Δ_{g} (- - -)

Заключение

1. Рассмотрена электронная кинетика триплетных состояний A, B, W, B', C молекулярного азота N_2 в средней атмосфере Титана на высотах 50-250 км при высыпании в атмосферу космических лучей. Исследовано взаимодействие электронно-возбужденных молекул N_2 с молекулами ацетилена C_2H_2 , этилена C_2H_4 , метана CH_4 и этана C_2H_6 в средней атмосфере Титана на высотах 50-250 км. Впервые показано доминирование реакций электронно-возбужденного молекулярного азота в процессах образования радикалов при столкновении с молекулами углеводородов. Расчитаны скорости процессов переноса электронного возбуждения с метастабильного молекулярного азота $N_2(A^3\Sigma_u^+)$ на молекулы СО в верхних атмосферах Титана, Тритона, Плутона.

2. Аналогичные кинетические расчеты с участием триплетного электронновозбужденного молекулярного азота проведены для средней атмосферы Земли 30-80 км во время высыпания в атмосферу высокоэнергичных релятивистских частиц. Проведен расчет интенсивностей свечения полос 1PG и 2PG систем N₂ во время высыпания высокоэнергичных электронов. Показано, что происходит значительное понижение интенсивностей свечения полос первой положительной системы с уменьшением высоты из-за влияния столкновительных процессов на населенности колебательных уровней молекулы N₂(B³П_g). Исследовано влияние межмолекулярных процессов переноса энергии с N₂(A³Σ_u⁺) на образование синглетного кислорода и свечение Атмосферных и Инфракрасных атмосферных полос O₂ на высотах средней атмосферы Земли.

СПАСИБО ЗА ВНИМАНИЕ!