

DEPENDENCE ON THE ATOMIC NUMBER Z OF APPLICABILITY CONDITIONS OF THE QUASI-CLASSICAL APPROXIMATION ON THE EXAMPLE OF IONIZATION POTENTIALS OF ATOMS AND IONS

G.V. Shpatakovskaya

Content

- Quasi-classical semi-empirical method
- Regularities in multi charged ion iso-electronic series of medium, heavy and super-heavy elements
- Approximation and replenishment of data on the ionization potentials
- Approximation of lanthanide and actinide atomic ionization potentials and homologue electronic state analysis
- Replenishment of data on heavy actinide atomic volumes
- Conclusion

Semi-classical method for representing <u>experimental or theoretical</u> ionization potentials $I_{Ne}(Z)$ (eV)

$$e_{Ne}(\sigma) = (I_{Ne}^{(Z)} / E_h) Z^{-4/3},$$

9

$$\sigma = \pi Z^{-1/3}$$

 $E_h = 27.211386 \ eV.$

Functions $e(\sigma)$ for multi-charged ions (q > 5)with $N_e = 1-46$ of some elements Z = 18 - 95. $\sigma \sim Z^{-1/3}$

Z = 18 – 54 [JETP, 2022]

Polynomial approximation of the ionization potentials for multi-charged ions. Inaccuracy $\leq 1\%$.

Functions $e(\sigma)$ for ions with $N_e = 1 - 78$ of elements $79 \le Z \le 110$. H-like shell filling. Replenishment of data. [Plasma Physics Reports, 2023]

Lanthanide and Actinide Ionization Potentials. d- and f –states competition

Lanthanide and Actinide Ionization Potentials I_p [a.u.] in special coordinates $\sigma = \pi Z^{-1/3}$.

[JETP Letters, 2020]

Some conclusions:

- Polynomial approximation in special coordinates makes it possible to estimate with good accuracy the NIST ion ionization potentials and to extrapolate missing data.
- In this case, the **hydrogen-like filling** of electron shells **is important.**
- General pattern **in special coordinates** becomes **simpler and more transparent** <u>with increase in Z</u>, which confirms the <u>improvement</u> in the conditions for using the <u>quasi-classical approximation</u>.

Atomic volumes of homologues V(Z). Electronic states f⁷ and f¹⁴ are isolated.

Lanthanoides

Actinoides

Atomic Volumes of Lanthanoides and Actinoides V(Z) Is it correct?

Lanthanide and Actinide Ionization Potentials and Atomic volumes in special coordinates lg $ZV(\sigma)$, $\sigma = \pi Z^{-1/3}$

Atomic Volumes of Heavy Actinides

Z	V _{exp}	$\mathbf{V_{lin}}$	$\mathbf{V}_{\mathbf{semi-class}}$
97 (α)	16,83	16.83	16.83
98	16.74	16.84	16.74
99	-	16.65	16.65
100	-	16.56	16.56
101	-	16.47	16.47

- Quasi-classical approach reflect the main dependence on the atomic number of not only ionization potentials, but atomic volumes too in the case of <u>hydrogen-like filling</u> of electron shells.
- A more accurate calculation of the ionization potentials of ions with the number of electrons 47≤Ne≤68 of elements with Z>54 is necessary.

Thank you for attention!

