Фрактальная размерность траектории и область локализации коллоидной частицы в плазме: численное моделирование

Косс К.Г., Лисина И.И., Петров О.Ф.

ОИВТ РАН МФТИ

Scientific-Coordination Workshop on Non-Ideal Plasma Physics December 7-8, 2023, Moscow, Russia

Активные броуновские

Частицы ScienceNews Magazine of the society for science & the plustor

Fluctuation and Noise Letters Vol. 4, No. 1 (2004) L151–L159 © World Scientific Publishing Company

RANDOM WALK THEORY APPLIED TO DAPHNIA MOTION

NIKO KOMIN*, UDO ERDMANN † and LUTZ SCHIMANSKY-GEIER

Environmental context explains Lévy and Brownian movement patterns of marine predators

Nicolas E. Humphries^{1,2}, Nuno Queiroz^{1,3,4}, Jennifer R. M. Dyer¹, Nicolas G. Pade^{1,4}, Michael K. Musyl⁵,

Like birds of a feather, sperm flock together Fluid dynamics of medium leads to collective swimming By Tom Siegfried 3:39pm, March 17, 2016 Citations

Oecologia (Berlin) (1983) 56:234-238

Analyzing Insect Movement as a Correlated Random Walk

P.M. Kareiva¹ and N. Shigesada²

Искусственные и природные активные броуновские частицы

C. Bechinger, R. Di Leonardo, H. Löwen, C. Reichhardt, G. Volpe and Giov. Volpe, Rev. Mod. Phys. **88**, 045006 (2016)

Как измерить сложность объекта?

Сложность **описания** [бит]

- Информация
- Энтропия
- Алгоритмическая сложность
- Минимальная длина описания
- Энтропия Реньи
- Длина программного кода
- Размерность
- Фрактальная размерность
- Сложность Лемпеля-Зива

Сложность создания

[время / энергия / деньги]

- Вычислительная сложность
- Информационная сложность
- Логическая глубина
- Термодинамическая глубина
- Стоимость
- Закодированность

Степень организации

- Эффективная сложность
- Метрическая энтропия
- Фрактальная размерность
- Избыточная энтропия
- Стохастическая сложность
- Степень детализации
- Эффективная сложность измерения
- Иерархическая сложность
- Грамматическая сложность
- Взаимная информация
- Пропускная способность канала
- Корреляция
- Хранимая информация
- Организация

Seth Lloyd (1960 -) prof. of mechanical engineering and physics at MIT

Эксперименты в коллоидной плазме

- Одна частица ~10 мкм в ловушке 35 мм
- ВЧ разряд, аргон
- мощность лазера 0,05 1,5 Вт

MF

MF+Cu

Янус MF+Fe

Arkar, K.; Vasiliev, M.M.; Petrov, O.F.; Kononov, E.A.; Trukhachev, F.M. Dynamics of Active Brownian Particles in Plasma. *Molecules* **2021**, 26(3), 561.

Параметры моделирования

$$m\ddot{\mathbf{r}} = \mathbf{F}_{\rm fr} + \mathbf{F}_{\rm Br} + \mathbf{F}_{\rm A} + \mathbf{F}_{\rm 0}$$
$$\mathbf{F}_{\rm fr} = -m\nu_{\rm fr}\dot{\mathbf{r}}$$
$$< F_{Br}^{\chi}(0)F_{Br}^{\chi}(t) >= 2\nu_{\rm fr}\frac{T\cdot\Delta t}{m}\delta(t)$$
$$\mathbf{F}_{\rm 0} = -\nabla\mathbf{U}_{\mathbf{0}} = -m\omega_{\rm 0}^{2}\mathbf{r}$$

 $\mathbf{F}_{\mathrm{A}}=F_{\mathrm{A}}\mathbf{n}(t)$

rotational diffusion coefficient $\omega = \frac{3D_T}{4R^2}$ translational short-time diffusion coefficient $D_T = \frac{T}{\nu_{fr}m}$

Параметры моделирования

 $m\ddot{\mathbf{r}} = \mathbf{F}_{\rm fr} + \mathbf{F}_{\rm Br} + \mathbf{F}_{\rm A} + \mathbf{F}_{\rm 0}$

	active/ passive V _{sp} [cm/s]	trapped/free ω_0^2 [s ⁻²]	underdamped/ overdamped v _{fr} /ຜ	ballistic/ diffusive dt·v _{fr}
"Diffusive"	0	0	0.1	100
	0	4	0.1	100
	0.56	0	0.1	100
	0.56	4	0.1	100
"Ballistic"	0	0	0.1	0.01
	0	4	0.1	0.01
	0.56	0	0.1	0.01
	0.56	4	0.1	0.01
Active free	0.01	0	100	0.01
	0.01	0	100	1
	0.01	0	100	100
	0.01	0	100	200
Active	0.01	60	100	0.01
trapped	0.01	60	100	1
	0.01	60	100	100
	0.01	60	100	200

	free passive	free active	trapped passive	trapped active
diffusive underdamped				
diffusive overdamped				
ballistic underdamped	027- 027- 028- 028- 028- 028- 028- 028- 028- 028			
ballistic overdamped				

Динамическая энтропия "первого пересечения" *

Provided that the spatial scale ε isn't very small, one can estimate the dynamic entropy by drawing up the sphere of radius ε around the particle in the moment t = 0, and then finding the moment of time τ , when the trajectory first passes the threshold value ε . Averaging this mean first-passage time, MFPT $\tau(\varepsilon)$ over all the particles of the system, we obtain the "MFPT dynamic entropy" $S(\varepsilon)$:

 $S(\varepsilon) \equiv 1/\tau(\varepsilon),$

where

8

$$\tau(\varepsilon) = \int_{0}^{\infty} P_{\varepsilon}(t) t dt$$

and $P(\varepsilon)$ is the probability of the particle to reach the border of the sphere ε in the moment of time between t and t + dt. So, the dynamic entropy $S(\varepsilon)$ shows how fast the particle leaves its environment.

* Allegrini, Douglas, Glotzer, Phys. Rev. E 60, 5714, 1999

 $\tau(\epsilon)$

Динамическая энтропия

Применение метода МFPT-энтропии

$$S(\varepsilon) \sim \varepsilon^{-\Delta_{\rm f}}$$

 $d(\log(S(\varepsilon)))/d(\log(\varepsilon)) = ?$

Фрактальная размерность

	active/passi ve V _{sp} [cm/s]	trapped/free ω_0^2 [s ⁻²]	underdamped/ overdamped ν _{fr} /ω	ballistic/ diffusive dt∙v _{fr}	FD	Err FD
"Diffusive"	passive	free	underdamped	diffusive	1.83	0.07
	passive	trapped	underdamped	diffusive	2.44	0.68
	active	free	underdamped	diffusive	1.84	0.07
	active	trapped	underdamped	diffusive	2.30	0.65
"Ballistic"	passive	free	underdamped	ballistic	1.67	0.09
	passive	trapped	underdamped	ballistic	1.77	0.32
	active	free	underdamped	ballistic	1.66	0.09
	active	trapped	underdamped	ballistic	1.72	0.30
Active free	active	free	overdamped	ballistic	1.30	0.07
	active	free	overdamped	ballistic	1.54	0.09
	active	free	overdamped	diffusive	1.78	0.10
	active	free	overdamped	diffusive	2.02	0.12
Active trapped	active	trapped	overdamped	ballistic	1.23	0.06
	active	trapped	overdamped	ballistic	1.39	0.14
	active	trapped	overdamped	diffusive	1.43	0.22
	active	trapped	overdamped	diffusive	1.41	0.25

Применение метода МFPT-энтропии

$$S(\varepsilon) \sim (\varepsilon)^{-\gamma}$$

 $d(\log(S(\varepsilon)))/d(\log(\varepsilon)) = ?$

	active/ passive	trapped/free	underdamped/ overdamped	ballistic/ diffusive	ε ₀
"Diffusive"	passive	free	underdamped	diffusive	9.40
	passive	trapped	underdamped	diffusive	0.02
	active	free	underdamped	diffusive	142.34
	active	trapped	underdamped	diffusive	0.27
"Ballistic"	passive	free	underdamped	ballistic	0.19
	passive	trapped	underdamped	ballistic	0.01
	active	free	underdamped	ballistic	3.36
	active	trapped	underdamped	ballistic	0.23
Active free	active	free	overdamped	ballistic	0.06
	active	free	overdamped	ballistic	0.19
	active	free	overdamped	diffusive	0.31
	active	free	overdamped	diffusive	0.43
Active trapped	active	trapped	overdamped	ballistic	0.02
	active	trapped	overdamped	ballistic	0.02
	active	trapped	overdamped	diffusive	0.02
	active	trapped	overdamped	diffusive	0.02

*Косс К.Г., Лисина И.И., Васильев М.М., Алексеевская А.А., Кононов Е.А., Петров О.Ф. Фрактальное броуновское движение коллоидных частиц в плазме // Физика плазмы. - 2023. - Т. 49. - №1. - С. 33-41.

Область локализации

Diffusive-passive-free-underdamped

$$\left\langle x_{\mathrm{T}}^{2}(t)\right\rangle = 2D_{\mathrm{T}}t\left\{1 + \frac{\exp(-\nu_{\mathrm{fr}}t) - 1}{\nu_{\mathrm{fr}}t}\right\}^{2}$$

* Lisin, E. A., Vaulina, O. S., Lisina, I. I., & Petrov, O. F. (2022). Motion of a self-propelled particle with rotational inertia. Physical Chemistry Chemical Physics, 24(23), 14150-14158.

Область локализации

Diffusive-active-free-underdamped

* Lisin, E. A., Vaulina, O. S., Lisina, I. I., & Petrov, O. F. (2022). Motion of a self-propelled particle with rotational inertia. Physical Chemistry Chemical Physics, 24(23), 14150-14158.

Область локализации

Diffusive-active-free-overdamped

* Lisin, E. A., Vaulina, O. S., Lisina, I. I., & Petrov, O. F. (2022). Motion of a self-propelled particle with rotational inertia. Physical Chemistry Chemical Physics, 24(23), 14150-14158.

Заключение

- Проведено численное моделирование динамики одиночной коллоидной броуновской частицы на плоскости.
- Рассмотрены различные режимы движения частицы:
 пассивное / активное,
- в периодических граничных условиях / в гармонической ловушке,
 - с малым / большим трением,
 - диффузионный / баллистический.
- Фрактальная размерность траектории частицы и область её локализации вычислены из динамической энтропии первого пересечения.

Спасибо за внимание! Выдвинуто предположение, что корректная оценка фрактальной размерности траектории имеет место лишь для "диффузионного" режима, т.е. для v_{fr}t >> 1.