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Abstract—A study is made of the nonadiabatic dynamics of photoelectrons produced in the interaction of an
elliptically polarized, high-power laser pulse with agas. Expressions for the so-called residual momentum and
energy of the electrons (i.e., the mean electron momentum and energy after the passage of the pulse through the
gas) are derived. The residual electron momentum and energy are investigated analytically as functions of the
gasand laser parameters. A relationship is established between the residual energy and the electron temperature

tensor. © 2001 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

In recent years, the problem of the residual electron
energy (REE) (i.e., the problem of what fraction of the
energy acquired by an electron at the top of alaser pulse
remainsin an electron after the passage of alaser pulse)
has been extensively discussed in the literature [1, 2].
For alaser pulse propagating through a preionized gas,
the REE isnegligible. However, for a pul se propagating
in a gas and ionizing it, this energy may become sub-
stantial because of the nonadiabatic motion of an elec-
tron produced during a short-term ionization event in a
laser field. As afemtosecond laser pulse propagates in
a low-density plasma, the electron heating due to
inverse-bremsstrahlung absorption is insignificant;
consequently, after the passage of the pulse, the elec-
tron energy is mainly determined by the REE.

The study of REE is particularly important for
developing X-ray lasers in which a multiply ionized
plasma that is strongly nonequilibrium with respect to
ionization and recombination serves as an active
medium [2]. In such lasers, the degree to which the
plasma is nonequilibrium with respect to these pro-
cesses should be as high aspossible; i.e,, it is necessary
to produce plasmas with the maximum possible ion
charge number and minimum possible REE. This prob-
lem can be resolved by ionizing a gas with a short
(about one hundred femtoseconds) intense (I, > 10" W
cm2) laser pulse.

Here, we apply the so-called “two-stage” ionization
model. According to this model, the transition of an
electron from the bound state to the state of free motion
isdescribed in terms of quantum mechanics (by the the-
ory of tunneling ionization) and its subsequent motion
in the laser field is described by the classica equations
[3, 4]. However, in contrast to [1-3], we assume that
free electrons are produced with a nonzero initial

momentum p= with the probability determined by the

corresponding quantum-mechanical distribution (cf.
[4]). The momentum and energy of an electron pro-
duced in such amanner are governed by itsinteraction
with the laser field and can be deduced from the classi-
cal relativistic equations of motion. Then, we can aver-
age the resulting electron momentum and energy over
the electron ensemble. The relationships between the
residua electron momentum (REM), REE, and elec-
tron temperature can be derived by comparing the
results obtained by one-particle and hydrodynamic
approaches.

In the particular case of a linearly polarized laser
pulse and under the assumption that the electrons are
born with a zero initial momentum, formulas (13) and
(12) for the mean energy and longitudinal momentum
of an electron (see below) yield formula (13) from [2].
Our purpose here is to generaize the theory of REE
developed by Pulsifer et al. [2] so as to take into
account the distribution of the produced free electrons
over their initial momenta and to consider relativistic
laser pulses with an arbitrary elliptic polarization. We
show that the ensemble-averaged energy and momen-
tum of a free electron in a laser field consist of two
parts. first, strongly oscillating components Q,,, and
P,.., which vanish after the pulse leaves the plasma,
and, second, weakly oscillating components Qg,, and
Py, which are just the REE and REM after the passage
of the pulse. The formulas derived here for Q;;,, and Py,
make it possible to clarify the dependence of the REE
and REM on the main gasand | aser parameters. theion-
ization potentias, the laser intensity, the degree of
éliptic polarization of the laser field, the laser wave-
length, and the pulse shape. We show that, when the
ionization front duration is aslong as several laser field
periods, the REE Q, is substantialy higher than the
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energy szm /(2m); consequently, Qy;, can beregarded as
the energy of disordered electron motion. We find that
the REE is expressed in terms of the sum of the trans-
verse (with respect to the x-axis along which the pulse
propagates) pressure tensor elements Iy, and I,
Quin = (NMyy + M/(20y) = (T, + T)/2, where n, is the
electron density and T{y and T,, are the electron temper-
ature tensor elements.

2. IONIZATION MODEL

We treat the problem in a one-dimensional approxi-
mation; i.e.,, we consider the electron motion in the
vicinity of the laser- pulse axis, assuming that the pulse
iswide enough to neglect both transverse electron drift?
and laser-light diffraction. We also consider a gas with
a sufficiently low density such that the nonlinear pro-
cesses distorting the pulse shape [8-10] occur on time
scales much longer than the pulse duration. In this case,
the laser field strength along the propagation direction
of the pulse depends on the x coordinate only through
the combination x/c-t, so that the shape of the propagat-
ing pulse can be assumed to be unchanged. Conse-
guently, for convenience, we can consider the electron
motion near the point x = 0, keeping in mind that the
results obtained will also pertain to the remaining elec-
trons, because they move in the same field that is only
shifted in phase with respect to the point x = 0.

At x = 0, the rapidly oscillating component E (t) of
the electric field of the laser pulse can be represented as

E(t) = E(t)[e,cos(wot) +nesin(wot)],
E(t) = Ecexp[—(t/a)], (1)

= J8TUC) I /(1+NY), O, = Trwm/~2IN2,

where g, and e, are unit vectorsin they and zdirections,
n O [-1, 1] is the degree of elliptic polarization (n =0
and |n| = 1 correspond to linear and circular polariza-
tions, respectively), E(t) isthe laser field amplitude, E,
is the maximum laser field amplitude, |, is the peak
intensity of the pulse, and Ty IS the full width at
half-maximum (FWHM) of the pulse.

For the above laser pulse parameters, the gasision-
ized on atime scale much shorter than the pulse dura-
tion. The ionization can be assumed to proceed viathe
tunneling mechanism when the Keldysh parameter [11]

lin [5, 6], it was shown that, in this case, free electrons moving in
they and z directions obey Maxwellian velocity distributions with
temperatures Ty, and T,

2 Simple estimates made in [7] show that the transverse electron
drift can be ignored under the condition o,/A, > 80(oy/1

ps) A 1o/ 107 Wem™ , Where A is the laser wavelength and o,
and o; are the characteristic width and duration of the pulse,
respectively.
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is much smaller than unity, y = w, ,/2mJ, /eE(t*) < 1,3
where mand e are the mass of an electron and the abso-
lute value of its charge, w, isthe laser frequency, E(t*)
is the electric field amplitude of the laser wave at the
time t* of an ionization event, and J, is the ionization
potential of anion in the (k — L)th ionization state. For
the short (Tpyuw < 1 ps) laser pulses under consider-
ation, the electron—ion collision time in a low-density
(ne < 10" cm™) gas is longer than the pulse duration;
consequently, the processes of recombination and
impact ionization do not come into play throughout the
pulse.

Under the conditions of tunneling ionization, we
can assume that the electron shells are ionized succes-
sively (starting from the shell farthest from the
nucleus). In this case, the number N of electrons origi-
nating by the time t per unit volume in the vicinity of
the point x under consideration is determined by the
equations

Zn
— =S= Zk& ZWknk_l,
k=1
ank
=S, S =W n+Wen, g,
()
k =1..,z-1 S =W,n,_,,

z,
_an’
k=1

where n, is the density of the ions in the kth ionization
state (k = O corresponds to a neutral atom), which are
heavy enough to be regarded as immobile; W, , isthe

ionization rate of these ions; ny =y 7_ n, isthe total

ion density (including neutrals); and z, is the nuclear
charge.

Under our conditions, the rate at which an electron
produced viatunneling ionization of anion collideswith
the potential barrier formed by both the electric field of
thision and the laser field is much higher than the laser
frequency. Therefore, we can search for the tunneling
ionization rate in the adiabatic approximation [13], i.e.,
by substituting the absolute value of the instantaneous

laser field, |E (t)|= E(t)jcosz(wot) + nzsinz((oot) , into
the formulafor the ionization rate in a constant electric
field, which is equal to the tunneling ionization rate in
acircularly polarized field. For arbitrary atoms, the lat-
ter rate is described by the Ammosov—Del one—Krainov
(ADK) formula [14]. Consequently, in the adiabatic

3 More precise conditions for tunneling ionization are determined
by llkov et al. [12], who showed that the tunneling mechanism is
dominant wheny< 0.5.
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approximation, thetotal ionization ratein thefield of an
arbitrarily polarized laser pulse has the form

-1

N,

2
e'k? Me'K’EO

W (t) = w =
“ "o’ the |E(1)D

(3)
O ZDkD E.. D

PR Bl

where n, = k,/Jy/J, isthe principal quantum number
of anion in the (k — 1)th ionization state with the ion-
ization potentia J,, Jy is the ionization potential of a
hydrogen atom, w, = 4.1 x 10!¢ s7! is the atomic fre-
quency, E, =5.1 x 10° V cmr! is the atomic €electric
field, and €' = exp(1). In deriving formula (3), we
assumed that the orbital and magnetic quantum num-
Fieg]s are both zero; this assumption is justified, e.g., in

In order to take into account the distribution of the
produced electrons over the initial momenta, we need
to know not only the total ionization rate W, but also the
differential ionization cross section Fk(p@, i.e., the

probability Wi(t) = [T (t, ppd’pfor an electron with
the initial momentum pto originate in a unit momen-
tuminterval per unit time. To determinel"(p), weturn

to the results obtained by Goreslavsky and
Popruzhenko [4], who proposed a formula for the dis-
tribution of the ionization-produced electrons over their
initial velocities. Strictly speaking, thisformulaapplies
to a zero-range atomic potentia (i.e., to a potential in
the form of ad function). However, the results obtained
by Delone and Krainov [15], who derived the Coulomb
correction to the ionization probability with allowance
for the long-term nature of the atomic potential, show
that the coefficient in front of the exponential function
in the expression for the differential ionization cross
section is independent of the initial momentum of an
ionization-produced electron. In view of this fact and
taking into account that the distribution derived in [4]
correctly reflectsthe exponential dependence of the dif-
ferential ionization cross section on the initial electron
velocity, we can extend this distribution to the case of a
complex atom. In thisway, we choose the coefficient in
front of the exponential function so as to describe the
total ionization rate by the ADK formula (3). As a
result, we obtain

1 E..
mE ()] JH

W (E®))
2 “4)

* [
} (p,z)d Pee Zma..

M(ps, )d’p =

exp * [ Ea.u
2mIu [l I
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where Wk(|é ()] is defined by formula (3) and the &
function reflects the fact that the electron momentum
P,z in the instantaneous direction of the laser field at

the time of an ionization event is equal to zero [4]. In
the plane perpendicular to this direction, the electrons
obey a two-dimensional isotropic distribution over the
initial momenta pr..

It should be noted that formulas (3) and (4) are valid
under the condition ay = (J,/3)*?E/E, , < 1, which may
fail to hold for strong laser fields. In sufficiently strong
fields, the ionization can exhibit the phenomenon of
stabilization. In other words, for a, > 1, the stronger the
laser field, the lower are both the ionization probability
per unit time and the total ionization probability (see,
e.g., [15-19)]). In [16-19], the stabilization of ioniza-
tion was calculated for laser pulses with sharp fronts
(the rise time of the front being ten atomic times 1, =
1/w, or shorter). On the other hand, Kulander et al. [18]
noted that, for pulses with smoother fronts, the stabili-
zation effect is less pronounced because the rapid ion-
ization of atoms occurs at the pulse front, where o, <
1. Our simulations for light gases that are completely
ionized by laser pulses with nonrelativistic intensities
(except, possibly, for the 1S electron shell) showed that
a pulse with a duration longer than ten laser field peri-
ods will completely ionizeionsin the (k — 1)th ioniza-
tion state by the time at which a, = 10~'; by thistime,
the relative concentration of these ions, n,_,/n,, will
become lower than 10-2 [20]. Consequently, for stron-
ger laser fields, the uncertainty in determining the prob-
ability W, will affect the final results only dightly.
Thus, we can conclude that, in our analysis of pulses
with rise times longer than several laser field periods,
the stabilization effect isinsignificant.

Another restriction on formulas (3) and (4) is that
they arewritten in the nonrelativistic limit and areinap-
plicable to ions with high ionization potentials (i.e.,
ions that are ionized by relativistic laser fields) [15].
Consequently, in applying our model to relativistic
laser pulses, we must assume that the gas atoms are
light enough for the plasmato be produced at the pulse
front; in other words, we must work under the condition

eE(t, )/(muwy,) <c,wheret, isthetimeatwhichthe

ions with the charge number z,.,, — 1 areionized at the
highest rate and z,,,, is the maximum charge of theions
that can be produced during the ionization of a given
gas by a given laser pulse. Of course, this restriction
does not refer to nonrelativistic pulses. Under the con-
dition eE(t, )/(muy) < ¢, we can also assume that

Ip(mo)| < 1.

PLASMA PHYSICS REPORTS Vol. 27 No.4 2001
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3. ENERGY AND MOMENTUM
OF THE IONIZATION-PRODUCED ELECTRONS

The ensemble-averaged momentum P(t) and energy
Q(t) transferred from the laser field to the electrons that
originate by the time t in the vicinity of the point x
under consideration, both divided by the number of
these electrons, are equal to

P(t) = N () J‘ J’P(t, t*, P )T (1%, Py )dpy dt*,
N (5)
Q(t) = N\ (t) f J’Q(t, t*, P )T (1%, pa ) d py dt*,

Here, P(t, t*, PO and Q(t, t*, p[p are the instantaneous

(at thetimet) momentum and energy of an electron that
originates with the momentum pat the time t* and

Mt py= Zi": Te(t. pon_ () whereand ny_, are
determined by formulas (2)—4).

Assuming that the laser-field envelope changes
insignificantly over the laser field peri od* and applying
the approach described in [21] (see aso [22]), we can
write the instantaneous (at the time t) momentum and
energy of an electron in the field of aplane, dlipticaly
polarized laser wave (the wave parameters are assumed
to depend on the variables x and t only through the com-
bination x — ct) in terms of the longitudinal (along the
x-axis) displacement &(t, t*) of the electron from the
point x at which it is born at the time t*. Note that, by
definition, we have &(t*, t*) = 0.

The kinetic energy Q(t, t*, ppy of an electron origi-
nating with the momentum pat the time t* is related

to the projection of its momentum onto the propagation
direction of the pulse (the x-axis) by

Q(t, t*, py) = CP(t, t*, pe) + mc(Kx —1), (6)

where K= Y- P(MO), Y= 1+ (p,/mc)?, and
2 2 2 2
Px = px* + py* + pz* ’
Now, the momentum of an electron can bewritten as
P(t, t*’ p*) = Pvan(t! t*v p*) + Pfin(t*v p*)!

where the components P, and Py;,, have the form
Py, = P, (Kalya)”+ 2K, JMQ,(@*) sin(¢*),
I:,y\,an = 2K« A me((p) s n((p)v

4 Goreslavsky et al. [7] showed that this assumption is valid even
for ultrashort laser pulses with a duration of about one laser field
period.

(7N
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P, = P, (Ke/¥i)" = 20K /MQ, (%) cos(¢*),
3)
P... = 2NKx/MQ(®)cos(9),

Py, = 272Qu(@)sn’(¢*) + n’cos’(¢)]

3 2 2
+1‘ Eiljﬁli.pp_z.’i[l+m_c_mcp(*
2| y4bmc  mcl «,

* 2
+ ZFJ (pT)K—’;[ Py, SiN(@*) —2np,, cos(¢*)],
mc y* (9)

P, = 2°2Qu(@)[sn"(9) + n"cos’(9)]

van

-27% (@) Q@) [sn(9)sin(e*)

+n”cos(@)cos(¢*)],

Here, @* = wyt* isthe field phase at which an electron
originates in the vicinity of the point x under consider-
ation, @ = w,(t - &(t, t*)/c) isthe field phase at the point
at which the electron occurs at the time t, and Q,(@) =
m(eE(@)/2mwy,)? is the averaged oscillatory energy of
an electron at thetimet. The longitudinal displacement
o(t, t*) of an electron from the point at which it is born
at thetime t* to the point at which it occurs at the time
t satisfies the transcendental algebraic equation pre-
sented in Appendix A.

In formulas (7)—(9), the strongly oscillating
momentum component P,,, depends on ¢, while the
weakly oscillating component Py, depends only on ¢*
rather than @. Ast —» o, we have P,,, — 0, because
@=1- &t t*)/c — oo by virtue of both dd(t, t*)/dt <
c and Q(@¢ — o — 0. Therefore, the component
P, makes no contribution to the REM. Consequently,
the REM is determined by the component Py,,, whichis
nonzero in the limitt — co.

Using formulas (5) and taking into account expres-
sions (7)—9), (3), (4), and (6), we can see that the
ensemble-averaged eectron momentum and energy
satisfy the relationships

P(t) = I:)van(t) +Pfin(t)! Q(t) = Qvan(t)+inn(t)'
The strongly oscillating components P, (t) and
Quan(® = P, _ (1) vanish ast — o, while the weakly

oscillating components Py, (t) and Qg (t) (which oscil-
late only slightly about their values averaged over the
laser field period) remain nonzero after the passage of
the pulse. The weakly oscillating components deter-
mine the ensemble-averaged momentum and energy
that the laser field transfersirreversibly in the nonadia-
batic interaction to the electrons produced in the vicin-
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ity of the point x by the time t during gas ionization.
Hence, after the passage of the pulse (att — o for a
Gaussian pulse), the components Py, and Qg;,, are just
the REM and REE.

Substituting expressions (7)—9), (3), and (4) into
formula (5), we find that the momentum p does not

contribute to the projections of the REM Py, onto the y-
and z-axes and that the contribution of pto the x-com-

ponent of Py, is determined by the small parameter
|pEf(mc)|2 < 1 and can aways be neglected. For thisrea-

son, the projections of P;;, onto the coordinate axes,

P, (1) = 2/mN(t)™
L (10)
X[ 3 Q(t)sin(egt* m () Wit ),
—ok=1
P,,.() = -n2J/mN(t)™

t z o (11)
[ > Qp (1) cos(qt* )y (1) Wi(t*)dt*,

—ok=1

t z,

— -1 * i a2 *
P, (1) = 2[CN(t)] L;Qp(t JCLICEOIN

108 (@ot* ) Iy (%) Wi(t*)dit*.
have the same form as for p.;= 0.

Formula (5) with expressions (6), (3), and (4) yields
the following relationship for Qg (t):

Qiin(t) = cPy (1) + Qu (1), (13)
where
HE(t*) "
Qu(t) = N(t)IZﬁk [n®sin’ (xt*) "

+ o8 (Wot* ) 12Ny (1% )W, (t%)dit*.
In formula (13), the term Qaccounts for the initial

velocity distribution of the ionization-produced elec-
trons; setting IM(p5 ) ~ &(ppy in expression (4) gives

QD: 0.

In order to investigate how the quantities Py;,, and
Qs depend on the parameters of the gas and the laser
pulse, it is convenient to eliminate oscillating termsin
the integrals in expressions (10)—(14) with the ioniza-
tion rate and electron density determined by formulas
(3) and (2), respectively. Below, the mean electron
energy and mean longitudina (along the x-axis) elec-
tron momentum as well as the transverse REM will be
analyzed separately.

ANDREEV et al.

3.1. Averaged Equationsfor P, and Qg,

We start by investigating the mean electron energy
and mean longitudinal electron momentum. To do this,
we perform the time integration in formulas (12) and
(14) over subintervals[t'; t' + T/(2wy)], each is as long
as one-quarter of the laser field period. For alaser pulse
with arbitrary polarization, the integrals over the sub-
intervals are expressed in terms of Bessel functions. In
this case, the quantities under consideration cannot be
represented simply as power functions of the electric
field strength (see [13]). In order to avoid difficulties
(which are not, however, of fundamental importance),
we consider two opposite limiting cases in which the
integrals over the subintervals [t'; t' + T/(2wy,)] can be
expanded in asymptotic or power series, because, on a
time scale of about oogl, the field amplitude and elec-
tron density change only dlightly, and, for a sufficiently
high ionization rate, the parameter o, ~ 10! issmall.

() If the polarization of a laser pulse is far from
being circular, 30, /(1 —n? < 1, formulas (12) and (14)
reduce to

5 4N (t)
Py Ji (W N
W0 = z k f ()N 1 (t)ag(t) "
<[n*+ SR |
z, t
Qu(t) = NT(O Y I [ Wilt) R (t)ay(t)
k=1 = (16)

x [1 _ gak(t') + Ofal(t)} ]dt',

where the coefficient R, incorporates the first three
terms of the corresponding asymptotic seriesin o, (see
Appendix B). With good accuracy, we can assume for
estimates that this coefficient is equal to 0.8, because,
in awide range of the pulse parameters, it lies between
0.7 and 1, provided that the rel ative densitiesn,_, of the
ionsin different ionization states are nonzero. Theion-

ization rate W, (t") averaged over the laser field period
[see expression (3)] hasthe form

3o, (1)
m(1-n’
[1+ () he -2+ 1J_ff]g+ Of a(t')} }

Wi(t) = Wi (E(t))
(17)

where the density of theionsin the kth ionization state,
n,, averaged over the laser field period, is calculated
from formulas (2), in which W and W (E(t")) are deter-
mined by expressions (17) and (3), respectively. We
PLASMA PHYSICS REPORTS  Vol. 27
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emphasize that, in contrast to formula (3), expression
(17) should be taken with the field amplitude E(t")

rather than with the instantaneous value |E (t")| of the
rapidly oscillating field. Note also that, for linear polar-
ization, the averaged ADK formula taken with the
instantaneous laser field (asis the case in [1, 2]) may
lead to an REE overestimated by a factor of approxi-
mately 1.5 [20].

For n = 0, the first term in formula (17) gives the
ADK formula for the rate of tunnellng ionization by
alinearly polarized laser field [14] The remaining
terms in the asymptotic series are negligible for 1 —
n?>> 3a, Note that, at a fixed peak intensity I, in
accordance with formulas (17), (3), and (1), the main

dependence of W on n in the limit 1 —n? > 3a, under
consideration is determined by the factor E**~°™ (1 -
212~ (1) A2y,

(ii) For alaser pulse with nearly circular polariza-
tion, 3a,/(1 -n?) > 1, formulas(12) and (14) reduceto

Py, (1) = (“hN 0)“) 3 % J'Wk(t)nk (t)al() "
[n L= nz)Rk(t)}dt.’

_ L

Q«(t) = N (t)kzl‘]k_J;Wk(tl)nk—l(tl)ak(tl) (19)

x[1=(1=n3/2+0{(1=n?)3}]dt.
Here, the averaged ionization rates Wy have the form

2

Wi(t) = w(Ee)a-250
O

1 1
Zaqt) ™7 é}

3 2 1 * 1
+8(1_n ) [18(} (t) 3Gk(t)%] 7 8}
(20)

+o{(1-n3 g
[l

thedensities n,_, are calculated from formulas (2) and
(20), and W(t") is determined by expression (3) with the
field amplitude E(t") in pI ace of the instantaneous field
|E (t)]. The coefficient Rk, which accounts for the

power seriesin 1 —n?, is presented in Appendix B.

SIn [14], the corresponding formula is misprinted: the numerical

factor %31_[ L should be raised to apower of 3/2 rather than 1/2.
PLASMA PHYSICS REPORTS Vol. 27 No. 4 2001
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According to formulas (16) and (19), the correction
Qp(caused by the nonzero initial electron momentum

pp) to the REE Qy;, depends weakly on the degree of

elliptical polarization of laser radiation; i.e., in both of
the above cases, the factors in square brackets are close
to unity. For a circularly polarized pulse, the ratio

Q{(cP,, ) = (hwy/2Jy < 1 is negligibly small. For a
linearly polarized pulse, we have Q{(cP,, )= 0.9y, so
that the correction Qcan be large in the regime close
to the regime of tunneling ionization (y ~ 1).

Figure 1 illustrates the dependence of the REE
Qgin(t —= o0) on the degree n of dlliptic polarization of
the pulse. The curves were obtained numerically from
formulas (3) and (12)—14) for different gases (hydro-
gen, helium, and oxygen). The residual energies in
hydrogen, helium, and oxygen were normalized,
respectively, to their values Qy,,, = 23, 600, and 1810 eV
in the case of acircularly polarized (n = 1) laser pulse
with the parameters|, =5 x 108 W cmr2, A, = 0.78 pm,
and Tgywyw = 100 fs. The curves symbolized by open cir-
cles reflect the residual energies calculated from the
averaged formulas (15)—17) (the lower curve) and for-
mulas (18)—(20) (the upper curve); we can see that

Onin(N/Qpn(n =1)
1.0+

0.8

0.6

0.4

0.2

Fig. 1. REE Qgp(t —— o0), normalized to its maximum (at
n = 1) value, versusthe degreen of elliptic polarization of a
laser pulse with the parameters 1) = 5 x 10" W em™, A, =
0.78 um, and Ty = 100 fs for hydrogen (dashed-and-
dotted curve), oxygen (dashed curve), and helium (solid
curve and curves marked by circles). The solid curve illus-
trates the results obtained from formulas (2), (3), and (12)—
(14). The curves marked by circles show the residua ener-
gies calculated from formulas (2), (13), and (15)—(17) (the
lower curve) and formulas (2), (13), and (18)—20) (the
upper curve). For hydrogen, helium, and oxygen, the maxi-
mum residual energies are equal to Qg (N = 1) = 23, 600,
and 1810 eV, respectively.
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Residual energy, eV

100}

10¢

g

1017 1018
Iy, W cm2

1016

1015

1014

Fig. 2. REE versusthe peak intensity | for nitrogen ionized
by a laser pulse with the parameters Ay = 0.62 um and
Tewnm = 100 fs. The heavy curvesrefer to alinearly polar-
ized pulse (n = 0), and thelight curvesrefer to an elliptically
polarized pulse (n = 0.4). The solid curves are calculated
with allowancefor theinitial velocity distribution of theion-
ization-produced electrons, and the dashed curves are
obtained under the assumption that the electrons originate
with azeroinitial velocity.

theseformulasgive quitereliableresultsfor n < 0.8 and
n > 0.8, respectively.

Since, for the chosen parameter values, the correc-
tion Qtothemain term cP, issmall, we canassume

that the electrons are produced with a zero initia
momentum p From Fig. 1, we can also see that the

profiles Qg,(N)/Qx, (n = 1) are similar for different
gases.

Figure 2 shows the REE as a function of the peak
intensity of a laser pulse in nitrogen, calculated from
formulas (12)—(14) with and without allowance for the
initial velocity distribution of the ionization-produced
electrons (inthelatter case, the correction Qjwas set at

zero). The stepsin the dependence of the REE on |, cor-
respond to the successive ionization of different elec-
tron shells. We can see that the initial velocity distribu-
tion of the ionization-produced electrons makes the
largest contribution to the REE in the case of low-inten-
sity laser pulses, for which the Keldysh parameter is
relatively large. The higher the degree of €lliptic polar-
ization, the smaller the contribution of the initial elec-
tron velocity distribution to the REE.

Pronounced peaks in the time evolution of the ion-

ization rate S = S, averaged over the laser field period
in helium correspond to the successive ionization of
different electron shells (Fig. 3). Replacing the peaks

ANDREEV et al.

by &-functions, we obtain from formulas (13), (15),
(16), and (18) the following estimates:

-17..

3
Qun(t) = {ze(t tk)} Z[(h‘;k)z

k=1 0

[4n°ag (L)

+505(t)] + Jkak(tk)}ea —t),

30(k
-n’

> <1,
2
Qun(t) = [Ze(t—to} [1+0°-0.7(1-n]

gak(tk)e(t -,

k=1 O
3a,
1-n 2
where t, is the time at which the ionization rate of the
ionsin the kth ionization state is the highest, o, (t,) ~ 10!
isthevalue of the parameter a, at thetimet,, 8(t - t,) is

the Heaviside step function, and Z,,,, < z, isthe number
of completely ionized electron shells. The coefficients

R.and R, aresettobeequal to0.83and 1 —0.7(1 —n?),
respectively (see Appendix B). As was shown above,
the correction J.a,, which comes from the initial
momentum distribution of the ionization-produced
electrons, should be taken into account only for laser
pulses with a nearly linear polarization.

Estimates (21) imply that, for laser pulses whose
polarization is far from being circular (n < 0.8), the
mean energy of the electrons produced from ionization
of the kth shell depends on the field amplitude as

Qrin, O N?EX(t) + (Jn/J0*? E;1E3(tk); for pulses with
nearly circular polarization (n > 0.8), this dependence
is Qrin, O E*(t). Also, the above formulas show that the

mean electron energy is proportional to the squared
laser wavelength.

As the peak intensity |, of the pulse increases, the
point t,, corresponding to the time at which the ioniza-
tion rate of the ions in the kth ionization state is the
highest, is displaced toward the pulse front along the
temporal profile of the pulse. Asaresult, for peak inten-
sities |, that exceed the ionization threshold I, by afac-
tor of two to three, the REE depends only weakly on |,
(According to [1], the threshold intensity is the pulse
intensity at which the potential barrier for an electronin
a laser field becomes lower than the ionization poten-
tial; for anion in the (k— 1)th ionization state, we have

>1,

PLASMA PHYSICS REPORTS Vol. 27 No.4 2001
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I, = 1.4 x 10"%(J/dy)*k?> W cm2) For multielectron
atoms, the REE changes in a jumplike fashion every
time the peak intensity of the pulse increases above the
threshold for the ionization of each next low-lying elec-
tron shell (Fig. 2).

As the laser pulse duration increases or the pulse
front becomes less steep [for example, when pulses
with a hyperbolic secant envelope are used in place of
Gaussian pulses (1)], the point t,, corresponding to the
time at which the ionization rate of the kth electron
shell is the highest, is displaced toward the pulse front
aong the temporal profile of the pulse. As aresult, the
REE decreases. However, for longer laser pulses such
that the ionization front is longer than ten laser field
periods, the REE changes insignificantly as the pulse
duration increases. Thus, for a laser pulse with the
wavelength A, = 0.78 um and the intensity 1, = 5 x
10 W cm?, the REE changes only slightly when
Trwnm > 100 fs.

Our calculations showed that, for laser pulseswith a
peak intensity above the threshold and a duration
longer than ahundred picoseconds, the parameter a,(t,)
is essentially insensitive to the characteristics of laser
radiation. Thus, for helium, this parameter takes on the
valuesa, ~ 0.1 and a, ~ 0.07, and, for oxygen, we have
o, ~0.08, a, ~0.06, 0; ~ a, ~ 05 ~ 0.05, and o, ~ 0.04.
Having found o, from Eq. (2) with expression (3) or
from relationships (17) and (20), we can use formula
(21) to estimate the mean energy Qy;, of the electrons

produced during ionization of the gas atoms up to the
kth ionization state. For example, for a helium gasion-
ized by alinearly polarized laser pulse with the same
parameters as in Fig. 1, we arrive at the estimates

Qrin, = 30 &V, Qyp, = 110 €V, and Qg = (Qqn, +
Qrin,)/2 = 70 €V, which agree satisfactorily with the

results calculated from more exact formulas (12)—(14):
Qrin, =27 &V, Qygip, =122 €V, and Qg, = 75 €V.

3.2. Equations for the Transverse REM

Before we proceed with the examination of the
transverse REM Pg, =e, ny.n (t—o0)+e, sz.n (t—

) as a function of the laser and gas parameters, note
that the integrals of rapidly oscillating functions in
expressions (10) and (11) differ substantially from zero
only when the width Lgof theionization curve St) isno
longer than several laser field periods. In fact, the ion-
ization-produced electrons move initialy in different
directions, depending on the laser field phases at which
they are gjected from the atomic shells. The total elec-
tron momentum can substantially differ from zero only
when the number of electrons propagating in one direc-
tion is markedly larger than the number of electrons
propagating in the opposite direction. This situation is
possible only when laser pulses are sufficiently short
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Fig. 3. Dimensionless ionization rate S(t)/(nywy) (heavy
curves), meanion charge Z = N/n; (dashed and dashed-and-
dotted curves), and dimensionless electric field strength
elE ()/(muye) (light curves) for helium ionized by (&) lin-
early and (b) circularly polarized laser pulses with the
parameters |, = 5 x 10'® W cm2, A, = 0.78 um, and
Tewhm = 30 fs. In Fig. 3a, the dashed-and-dotted curve is
for the zeroth harmonic S, = S of theionization rate. In Fig.

3b, the circlesillustrate the results from the approximations
of the first and second peaks in the ionization curve by
Gaussian functions.

and/or sufficiently intense to produce the ionization
front with asmall width L. While the absolute val ue of
the transverse REM is a monotonically decreasing
function of the width of the ionization front, the direc-
tion of the REM is governed by the laser field phases at
the times t, at which the ions in the kth ionization state
areionized with the highest rate: the vector of theresid-
ua transverse momentum of the eectrons produced
from ionization of the kth shell will rotate® about the x-

6 For a linearly polarized laser pulse, the transverse REM will
reverse direction, because it can be oriented either parallel or anti-
parallel to the electric field.
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axis (along which the pulse propagates) as the field
phase at the time t, will change (as aresult of changes
in laser pulse parameters).

In order to justify the above considerations and to
analytically investigate the dependence of the transverse
REM on the laser and gas parameters, we approximate
theterm S, which incorporates the ionization of the kth
electron shell into the total ionization rate Sin Egs. (2),
by a smooth curve, e.g., such that is described by a

Gaussian function S, = nyexp{—[(t—t)/tg J* /[ /s i ],
where 1g = Lg /c and L« isthe characteristic width of
the kth ionization front (Fig. 3b). Since the direction of
the momentum Py, is sensitiveto the field phase at the
ionization time t,, we must take into account the phase
shift of the oscillating component cos(w,t) with respect
to the pulse center. For this reason, we specify the elec-

tric field of the pulsein the form E (t) = E(t)[e,cos(uyt +
b) + ne,sin(wyt + ¢)], in contrast to formulas (1), in
which we set ¢ = 0. As aresult, with allowance for the
fact that, on scale lengths L |, the electric field changes
only slightly, we arrive at the expressions

Zmax
Pyt @) = 2Z0 3 ./mQ,(t)
k=1

. —(WT k/2)2 (22)
x [sin(wot + d)e " [1—py (1]
. ~(303gTs /2)°
+sin(3woty + 39)e : (R, () — Ky (8] + ... 1,
Zinax
Pt ®) = -2nZp S JmQy(t)
k=1
~(wpTs 12)’ (23)
x [cos(uwptc+ d)e 7 [1+ ()]
(3w /2)°

+ cos(3wpty + 3d)e [, (8 + i, (8] +-.- 1,
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where Z,,,, < z, is the number of completely ionized
electron shells. The coefficients ,, =W, /(2W, ),

M, = W, /2W,), etc., incorporate high-frequency
harmonics in the spectrum of the ionization source for
alaser pulse with a noncircular polarization (Fig. 3a).
Here, W, = 2W,cos(2uot) (n=1,2...) denotes the
[2n]th high-frequency harmonic of the ionization rate
Wi, Wi, = W isthe ionization rate averaged over the
laser field period [which is calculated from formula
(17) when the pulse polarization is far from being cir-
cular and from formula (20) when the pulse polariza-

tion is nearly circular], and the superior bar stands for
averaging over the laser field period. The first of these

coefficients takes on the following values: p, =1 -
30,R /(1 = n?) when the pulse polarization is far from
being circular, p,, =1- Iik =0.7(1 -n? < 1 whenthe
pulse polarization is nearly circular, p, = 0.75 for a
linearly polarized pulse, and W, = 0 for a circularly

polarized pulse. The coefficients p, withn> 1 can be

expressed in terms of the analogous power seriesin ay
or 1 —n?; however, we do not require the exact values
of these coefficients, because thefirst term on the right-
hand side of expressions (22) and (23) is much larger
than the remaining terms (the exponential functions
contain the factor 2n + 1 and thusrapidly decrease with
increasing n).

Formulas (22) and (23) imply that, for singly
charged ions (including hydrogen ions) produced by a
laser pulse with almost circular polarization (p,, < 1),
the absolute value of the transverse REM,

P | = JP2 (t—=c0) + P2 (t—= 00) = 2,/mQ,(t)

e—(coorsl/'z)2

(24)

x 2L+ 2 + (1—p®) + [N%(1 + 1) — (1 — u?)] cos(20pt; + 20)

depends weakly on the phase wyt; + ¢ and decreases
exponentially with increasing the ionization front width
T5; and, accordingly, the pulse duration Tgyyu. As the
field phase changes, the vector of the transverse REM
rotates about the x-axis such that the angle 6 between
P, and the y-axis changes according to the law

8= arctan{ N cot(woty + ¢ (1 + py /2)/(1—py /2)}
n#o0.

For alinearly polarized pulse, the transverse REM is
oriented parallel to E (to the y-axis) and, in
accordance with formula (22), changes from

— 12)?
about =[—2./me(t1)e(w°T“) to

2. JmQ,(t)e """ as the field phase at the time t,
changes. In this case, the angle 6 takes on two values: —
/2 and 172.

about
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Note that, according to formula (24), the maximum
(for a given width 15, of the ionization front) absolute
value of the transverse REM, |Pg, |, is proportional to

N(l+ Hy,) forn>(1—py )1+ py,) andto 1 - py, for
N < (- py, )1+ Yy,). Consequently, from the asymp-
totic expressions for p,,, we can see that [Pg |

increases as n increases from 0 (a linearly polarized
pulse) to 1 (acircularly polarized pulse).

The above anaytic estimates are illustrated by
Fig. 4a, which shows the energy of the ordered trans-
verse electron motion, (2m)~'|Pg, |, calculated from
formulas (10) and (11) for hydrogen ionized by laser
pulses with the parameters I, = 5 x 107 W cm™ and
Ao = 0.78 pm and with different polarizationsn = 0.1,
0.5, and 1. In accordance with our anaytic estimates,
the envelopes of the curves 2m)!|Pg P(Tramm) are
exponentially decreasing functions of Tgym. The lower
the degree ) of eliptic polarization of alaser pulse, the
more oscillatory isthe dependence 2m)'|Ps, X(Tewam);
recall that this effect stems from the fact that, as Tppm
changes, the point t; is displaced aong the temporal
profile of the pulse. The dependence 2m)~!|Pg, P(Tewam)
for helium is shown by the dashed curve in Fig. 4b. We
can see that, in contrast to hydrogen, the curve
2m) ! Pg P(Tewaw) for helium decreases nonmonoton-
icaly as Tpwum increases, because the expression for
the energy of the ordered transverse electron motion
contains the cross terms of the form sin(wyt, +
¢)sin(wpty + ¢) with k# | and cos(wyt, + ¢)cos(wpt, + ¢)
with m# n, which stem from the summation of the infi-
nite seriesin the squares of P, and P, [see expres-

sions (22) and (23)].

Unlike the transverse REM, the longitudinal REM
and, accordingly, the REE, which is related to the lon-
gitudina REM by expression (13), experience less pro-
nounced variations as Trym changes. Thiscan beillus-
trated, e.g., by the dashed-and-dotted and dotted curves
in Fig. 4b, which correspond, respectively, to the mean

energy Pfﬂn /(2m)(t — o) of the ordered longitudinal

electron motion and the REE Qg;,(t — <o) for helium.
That is why, for ultrashort laser pulses, the transverse
REM can be much higher than the longitudinal REM.
In contrast, for longer pulses, the longitudina REM
becomes higher than the transverse REM, because the
latter approaches zero as the pulse duration increases
(Fig. 4b).

Our analytic expressions [formulas (24), (21), and
(12)—«(14)] and calculated results (Fig. 4) also imply
that, for the above laser and gas parameters, the mean

residual energy Qg;, = [Piﬁn (t —= o) + [Py, [*]/(2m) of

the directed €ectron motion is much lower than the
REE Qpn(t —> ).
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Fig. 4. (@) Dependence of the residual mean energy
[P, 2/(2m)(t —= o0) of the ordered transverse electron
motion in hydrogen on the duration of laser pulseswith I, =
5x10'77W cm and A = 0.78 um and different polariza-

tions: n = 0.1 (dashed-and-dotted curve), n = 0.5 (dashed
curve), andn =1 (solid curve). (b) Dependence of theresid-

ual mean energies ([P, |2/(2m)(t — 0)) (dashed curve),
(P; /@m)(t —> «)) (dashed-and-dotted curve), and

Qfin(t — ) (dotted curve) in helium on the duration of a
circularly polarized laser pulse with the same parameters.

4. ELECTRON PRESSURE TENSOR
IN THE NONRELATIVISTIC
COLLISIONLESS LIMIT

Here, we consider the relationship between the REE
Qpin(t —= o0) and the electron pressure tensor I1;; or,
equivalently, the electron temperature tensor T; =

ne ;. To do this, we use hydrodynamic equations for
alow-density gasionized by the field of a nonrelativis-
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tic laser pulse. The desired hydrodynamic eguations
can be derived from the following collisionless kinetic
equation for the electron velocity distribution function
f(r, v, t):
of ,,of _ed € VB
ot " Viar, Tmav,H T e 0D
(25)

z,
= Z F(r, v, t)ne_q (1),
k=1

where g, isacompletely antisymmetric unit tensor, the
subscript i stands for the ith vector component, and E;
and B, are the corresponding components of the electric

(E) and magnetic (B) fields of the pulse. We will
derive the hydrodynamic equationsfor the pressure ten-
sor IMj; in the weakly relativistic limit, because, as was
shown in the previous section, the REE isinsensitive to
therelativistic effectsif agasisionized by anonrel ativ-
istic laser pulse.

Applying the standard method of moments to
Eq. (25) yields equations for the hydrodynamic quanti-

ties—the electron density n, = I fd’v, eectron
momentum P = n;lmJ' vid®v, and electron pressure

tensor M= mfv;v; fd’v (with v; =v -V, and V;, =
P;/m). The corresponding identity transformations put

these equationsin the form’
onJot +div(nV) = S, (26)
0P, 0
— V. =
ot VJaij'
19 27
S e
- —eEi—_—_ei VB —__I_Ii',
e C T nor,
al-l . L}
ot AV(VTTap +2005) = MVVpS+2Qg
(28)
ov ov eB
—naia_rf—nsia_ria—(eajlngj+e[3j|naj)ﬁcl-

Here, qqp = (m/Z)IVC'x vV'f d’v isthe heat flux vector,

the subscripts a and B are fixed, and summation over
the repeated Latin indices is used. Using formula (4),

we can reduce the quantity Qs = mZi“: Nt [T,

" Equations (26) and (27) are also valid in the relativistic limit.
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r, hv,VpdPy to

01 0 0
U

. _ 100 sri(y) -is
Qi = 490 9W) Zsn2w)

I o

Jo-3sn(y) woS(y) § @
z, ~
Iy |E|
X n._WJy, |[——,
kzl k—1VVkYH \]kEa_u_

where Ji(t) = arctan{ ntan(w,t)} isthe angle between
the instantaneous electric field E and the y-axis.

At the initial time (before the pulse starts to ionize
the gas), we have IMyg(t = 0) = 0. For t > 0, the tensor
Mg is determined by the source terms—the first and
second terms on the right-hand side of Eg. (28). In
order to calculate IM,g in the first approximation, we
can use the smalness of the parameters |V/c|,

VRIS, e Syl and
[V/c|[S/(newy)] ' (Kyo,) ! in theionization region (recall
that 15 is the characteristic width of the kth ionization
front and o, is the characteristic transverse size of the
pulse); in Eq. (28), we can also neglect the heat flux
vector g, and the terms contai ning the combinations of
Mg and V. When the two subscripts {a, 8} do not run
the coordinate pairs{a = x, B =y}, {a =y, B =X},
{a=x,B=2,o0r{a=z B =x}, thelast term on the
right-hand side of Eq. (28) can also be omitted, because
it is proportiona to eB/(mc). As a result, Eq. (28)
becomes

t

Mag(t) = J'[mVa(t')Vp(t')S(t')+2Q&B(t')] dr'. (30)

For{a=x,B=y} or{a =y, B=x}, wemust supple-
ment the right-hand side of Eg. (30) with the term

—(mc)—lj';oI'Iyy(t')eEy(t')dt', and, for {a =x, B =2
or {ad =2z B = x}, we must add the term
—(mc)™! %I'Izz(t')eEy(t')dt'. However, expressions (35)
(seebelow) imply that these termsboth vanish ast —— oo,

In the first approximation, the transverse hydrody-
namic velocity components V, and V, can be cal culated
by keeping only the first two terms on the right-hand
side of Eq. (27). We integrate this equation by part,
neglecting the difference on,/0t — S = div(n.V) and

assuming that |8In|E dt| is much less than |d1nn,/at].
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As aresult, we obtain from (27) the desired transverse

velocity components

Vy(t) = e(mwo)_l[—E(t)sin(th)

+ng (1) | E(t')sin(wot')sa')dt'},
h (1)
V(1) = ne(mwo)‘l[E(ncos(wot)

-n'(t) J E(t')cos(wot')S(t')dt‘}.

For our purposes, it is sufficient to calculate the lon-
gitudina hydrodynamic velocity V, to within terms of
the second order in the laser field. Under the condition

= §/(nsy) << 1, we retain the leading-order termsin
the Maxwell equations and the equation of motion (27)
to arrive at the following expression for V,:

Vy = ~(1-n")(me) " Qy(t)
x [ cos(2wyt) —x sin(2w,t)] .

(32)

Substituting expressions (31) into formula (30), tak-
ing into account expressions (10) and (11) for P,_(t)

and P, (t), and performing identity transformations,
we obtain

Sy = n(0)]Q, (0 - P e

2N..(0) = ne(t)[sz,n(t)— P )} (33)

Py.(1) zfm(t)}

2m

SM,e(0) = 5100 = (0] Qe (0 -

Here,

t z
Qy,, (1) = 2n'(0) [ Y Qp(t*)sin’(wt*)

—ok=1

x N ()W (t*)dt* + ny* (1),

t z

Q, (1) = 2n°n () [$ Qu(t*) cos’(wet*)
IZ (34)
X Ny (P )W, (t)dt* +Q_ (1),
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t z,
Qe (D) = NN (1) [ Qu(t*)sin(2et)
—ok=1
x Ny (T) W (t*)dt* + Qyz* (1),
where Q= J:o Qup (t¥)dt*. The energy Qy, deter-
mined by formulas (13) and (14) is equal to Q, +
Q.. = Qpn, and the REE is Qy;,(t — ). The sum of

the transverse energies, which are associated with dis-
tribution (4) of the ionization-produced e ectrons over
their initial velocities, isequal to one-half of the energy
Qpjinexpression (14): Qi+ Q= Qry2. Theremain-

ing haf is covered by the longitudinal energy, Q.=
Q2.

The last formulas, together with expressions (33)
and (34), determine the relationship between the tem-

perature in the (y, 2) plane T, = n;1 My, (Wherep, v =
Y, 2), with the REE and REM.

Analogously, using relationships (32) and (31) and
taking into account the above additional terms with
{a=x,B=y} and{a =X, B =2, weobtain from for-
mula (30) the following expressions:

2 xx(t) =(1-n ) zJ' Q( )[COS(Z(JO t*)

k=1_c

+X(t) sin(200t*) Ny (F) Wi (1) dt* +Q (1),

z, %
M) = (L=n*)(me’) ™ [Q (") sin(3aant*)

k=1_c

— sin(wot™) + 2 (t*) cos(aet* ) Iy 1 (t* )W, (t* ) dt* —

M4y(1) 4/ Qp(t)/(Mc?) sin (o),

Me(t) = n(1-n*)(mc>) ™"
z, t

xS [ Q) [cos(3unt*) — cos(wst?)

k=1_c

(35)

—2X(t* ) sin(wot* ) Iy _; (1* ) Wi (t* ) dt*

+Q,,, () +1_(1)JQy(t)/(mc”) cos(aot).

Recall that, since Qu(t — «) — 0, the additional
terms, which are proportional to I, or M, vanish as

t—> o0,

Now, we consider the electron pressure tensor for
moderately short and/or moderately intense laser
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pulses such that the kth ionization front is no shorter
than several laser field periods, so that w,1g > 1. For
such pulses, formulas (33) and (35) imply that the off-
diagonal elements of the pressure tensor as well as the
transverse components of the REM are all exponen-
tially small. For laser pulses with different polariza-
tions, the diagonal elements of the pressure tensor and
of the temperature tensor T,, = ngl M, can be deduced

from formulas (33)—(35) to within unimportant small
terms.

(i) When the pulse polarization is far from being cir-
cular, 3a,/(1 —n? < 1, weobtain

Tyy(t) = 2nyin(t) = 12[nE(t)(ﬁwO)2]_l

Ri(t))
2
1-n

x nJ3 Wi (1), _, (1) o (1) dt' + Q. (1)/2,
kZl k:[o k k

TA(t) = 2Q, (1) = 8n°[ng(t) (hwp)] ™

Y 3 [ Wit (E) (1)

k=1

4

(36)

[1- gak(t')fk_—(;’z}dt' + Q. (012

Tolt) = 8(1=n")[ne(t) () 'mc?] ™
z, t
%Y 3 [ W) R a ()0 XE) e+ Qu (1),
k=1 _»
where Wy (t') is determined by formula (17) and the
asymptotic seriesfor X, and R, are presented in Appen-
dix B.

(ii) For a pulse with nearly circular polarization,
3a,/(1 —=n? > 1, we have

Ty(t) = 2Q,, (1) = 4[ng(t)(hw)]

Z, t
XY I W) a (D) (ORI + Qe (1)/2,
k=1 _&

TA(t) = 2Q, (1) = 4n’[ng(t)(hwp)’]

; 37
x zaif Wi(t)N_1(£)ae(t)[2= Ry (t)] it + Qu (1)/2,
k=1 _»

To() = 4(1-n%) It (i) 'mc ™
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z, t
XY [ W) Rea () (€t + Qe (1),

k=1

where W (t') is determined by formula (20) and the
asymptotic series for Iik is presented in Appendix B.

Using expressions (36) and (37), we can estimate T,
as

(Txx - Q*)/Q*
07 x 10°%(1-n%)"(3/3n)/[(4y)*(100,)] .

For ions with low charge numbers and for laser pulses
with nearly circular polarization, thisratio is, asarule,
smaller than unity; thisindicatesthat the main contribu-
tion to the xx-element of the pressure tensor comes
from the distribution of the ionization-produced elec-
trons over their initial velocities. For highly ionized
atoms and for laser pulses whose polarization is far
from being circular, this ratio can be larger than unity,
because, in this case, the xx-element of the pressureten-
sor is governed mainly by the interaction between the
laser field and the el ectrons as they are g ected from the
atoms. Formulas (36) and (37) aso allow us to con-
cludethat T,, < T,y and T, < T, (the latter isvalid for
laser pulses whose polarization is sufficiently far from
being linear).

Note also that formulas (15), (18), (36), and (37)
give

Txx_Q*
|5§fm/m
D[(1—r12)2/(r]2+ 30/2) =1, 1-n%> 3a,
0
d1-n3»*2<1, 1-n°< 3aq,.

5. CONCLUSION

We have investigated the REE and REM in gases
ionized by dlliptically polarized, relativistic, short laser
pul ses.

We have shown that, for laser pulses with polariza-
tion that is not too close to linear, the distribution of the
ionization-produced electrons over their initial veloci-
ties is unimportant for obtaining the REE and REM,
which thus can be determined under the assumption
that the electrons are produced with azero initial veloc-
ity, asisusually donein calculations (see, e.g., [2]). For
y <€ 1, we can as usual assume that, during ionization of
a gas by alinearly polarized laser pulse, the electrons
originate with a zero initial velocity. However, at the
boundary of applicability range of the tunneling-ion-
ization model (y~ 1), theinitial velocity distribution of
the ionization-produced electrons may become impor-
2001
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tant for calculating the REE but again has an insignifi-
cant influence on the REM.

Analytic formulas (15)—24) and (33)—(37) make it
possible to study how the main parameters of the gas
and the laser pulse affect the REE, the REM, and the
electron temperature. We have shown that the trans-
verse REM is essentially nonzero only for very short
laser pulses (no longer than one or two tens of laser
field periods) and decreases exponentially as the pulse
duration increases. The same conclusionisvalid for the
off-diagonal elements of the electron pressure tensor.
For longer laser pulses, only the diagonal elements of
the pressure tensor are significantly different from zero.

The diagonal elements of the pressure tensor satisfy
the inequalities Ny, < M,y and M,, < M, and the ratio
of My, to I, is determined by the degree of elliptic
polarization n (the pulse is assumed to propagate along
the x-axis). The REE is expressed in terms of the pres-
sure tensor elements and REM as Q;, = (2n)'(M,, +

n, - (2m)—1(P§fin + Pjﬁn). If the laser pulse is not too

short, the final energy of the directed electron motion,
which is proportional to the sguared REM, is much
lower than the REE.

We have found that the REE is related to the longi-
tudinal REM by the simple expression (13) and is pro-
portional to the third power of the electric field ampli-
tude (at the time of the most intenseionization) for laser
pulses with nearly linear polarization and to the second
power of the electric field amplitude for pulses with
nearly circular polarization. On the other hand, as the
peak pulseintensity |, changes, the point corresponding
to the time at which the ionization rate is the highest is
displaced aong the temporal profile of the laser pulse.
Asaresult, for the peak intensity |, abovetheionization
threshold for one-electron atoms, the REE depends
weakly on |, regardless of the pul se shape. For a gas of
multielectron atoms, the dependence of the REE on |,
is jumplike in character, the number of “jumps’ being
equal to the number of completely ionized electron
shells. We have found that the REE is proportional to
the squared laser wavel ength. We have aso shown that
the sharper the pulse front, the higher the REE; in par-
ticular, the REE is higher for pulses with the same peak
intensity |, but with a shorter duration.
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APPENDIX A

The displacement & of an electron from the point at
which it is born is described by the equation

5 = (mu)oc)_l[Z[wo(t—t*) — ko8] Qp(t*)

X [sinz((oot*) + r]zcosz(coot* )]
+4Qy (%) Qp (t — d/c) [ Sin(wet* ) cos(wot — ko)
—1°cos(wt* ) sin(t —ked) ]
—(U2)(1-n*)Q,(t —d/c)sin(2upt — 2k,3)

~(312)(1-n*)Q,(t*)sin(2upt*)
t-o/c

+(1+n? j Qp(cp)dcp}é*(t,t*,p*;é),
3y (1, 1%,y 8) = [c(t—t*) =]

2Q0 () Pya K s n Prk, .
X{W%v_fsn(%t )—nm—c\zcos(wot g

lg2_ g Ke[PwD , (Pag’
* 50k _1+y;‘[DncD * Cind]

1/2
+ w[&i“ cos(wy(t —t*) —ky0)

Jmay, C?
Pz Ky . *
2Q4 2(t*) [Py, Ky P ks
_4Xp ( )[mic_zcos(wot*) +r]m—c—23|n((.00t*)}.
«/Ewo Y+ Vx

In the case a hand, we have |p{(mc)| < 1. Conse-

quently, for the conditions of tunneling ionization (y <
1), we can perform manipulations similar to those in
the body of this paper in order to show that [0 < [0

O] Accordingly, in writing Egs. (7)—9), we assumed

that the displacement & dependsonly ont and t* and is
independent of p

APPENDIX B
The coefficient R, in formulas (15) and (36), the
coefficient Iik in formulas (18) and (37), and the coef-
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ficient X, in formula (37) for T,, have the form

+

-

Ry

3 1 117 30ir299
R, = 1+§ak%n*+———1m+—k[—

12 20" 218
4nf—25n*+4n*_321/2+ 422}'*0{0(;3{?,
1-n (1-n)
| -2 701_n? -2
—1+8[2n* 1 3GJ(1 n*+0{(1-n*%,

X, = 1-60,/(1-n)
+(30) [(11/2—2n,)/(1—n") +2/(1-n%)]

+O{0(f}.
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