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1. INTRODUCTION

In recent years, the problem of the residual electron
energy (REE) (i.e., the problem of what fraction of the
energy acquired by an electron at the top of a laser pulse
remains in an electron after the passage of a laser pulse)
has been extensively discussed in the literature [1, 2].
For a laser pulse propagating through a preionized gas,
the REE is negligible. However, for a pulse propagating
in a gas and ionizing it, this energy may become sub-
stantial because of the nonadiabatic motion of an elec-
tron produced during a short-term ionization event in a
laser field. As a femtosecond laser pulse propagates in
a low-density plasma, the electron heating due to
inverse-bremsstrahlung absorption is insignificant;
consequently, after the passage of the pulse, the elec-
tron energy is mainly determined by the REE.

The study of REE is particularly important for
developing X-ray lasers in which a multiply ionized
plasma that is strongly nonequilibrium with respect to
ionization and recombination serves as an active
medium [2]. In such lasers, the degree to which the
plasma is nonequilibrium with respect to these pro-
cesses should be as high as possible; i.e., it is necessary
to produce plasmas with the maximum possible ion
charge number and minimum possible REE. This prob-
lem can be resolved by ionizing a gas with a short
(about one hundred femtoseconds) intense (

 

I

 

0

 

 > 10

 

15

 

 W
cm

 

–2

 

) laser pulse.
Here, we apply the so-called “two-stage” ionization

model. According to this model, the transition of an
electron from the bound state to the state of free motion
is described in terms of quantum mechanics (by the the-
ory of tunneling ionization) and its subsequent motion
in the laser field is described by the classical equations
[3, 4]. However, in contrast to [1–3], we assume that
free electrons are produced with a nonzero initial

momentum 

 

p

 

*

 

 with the probability determined by the
corresponding quantum-mechanical distribution (cf.
[4]). The momentum and energy of an electron pro-
duced in such a manner are governed by its interaction
with the laser field and can be deduced from the classi-
cal relativistic equations of motion. Then, we can aver-
age the resulting electron momentum and energy over
the electron ensemble. The relationships between the
residual electron momentum (REM), REE, and elec-
tron temperature can be derived by comparing the
results obtained by one-particle and hydrodynamic
approaches.

In the particular case of a linearly polarized laser
pulse and under the assumption that the electrons are
born with a zero initial momentum, formulas (13) and
(12) for the mean energy and longitudinal momentum
of an electron (see below) yield formula (13) from [2].
Our purpose here is to generalize the theory of REE
developed by Pulsifer 

 

et al.

 

 [2] so as to take into
account the distribution of the produced free electrons
over their initial momenta and to consider relativistic
laser pulses with an arbitrary elliptic polarization. We
show that the ensemble-averaged energy and momen-
tum of a free electron in a laser field consist of two
parts: first, strongly oscillating components 

 

Q

 

van

 

 and

 

P

 

van

 

, which vanish after the pulse leaves the plasma,
and, second, weakly oscillating components 

 

Q

 

fin

 

 and

 

P

 

fin

 

, which are just the REE and REM after the passage
of the pulse. The formulas derived here for 

 

Q

 

fin

 

 and 

 

P

 

fin

 

make it possible to clarify the dependence of the REE
and REM on the main gas and laser parameters: the ion-
ization potentials, the laser intensity, the degree of
elliptic polarization of the laser field, the laser wave-
length, and the pulse shape. We show that, when the
ionization front duration is as long as several laser field
periods, the REE 

 

Q

 

fin

 

 is substantially higher than the
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; consequently, 

 

Q

 

fin

 

 can be regarded as
the energy of 

 

disordered

 

 electron motion. We find that
the REE is expressed in terms of the sum of the trans-
verse (with respect to the 

 

x

 

-axis along which the pulse
propagates) pressure tensor elements 

 

Π

 

yy

 

 and 

 

Π

 

zz

 

:
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, where 

 

n

 

e

 

 is the
electron density and 

 

T

 

yy

 

 and 

 

T

 

zz

 

 are the electron temper-
ature tensor elements.

 

1

 

 

2. IONIZATION MODEL

We treat the problem in a one-dimensional approxi-
mation; i.e., we consider the electron motion in the
vicinity of the laser-pulse axis, assuming that the pulse
is wide enough to neglect both transverse electron drift

 

2

 

and laser-light diffraction. We also consider a gas with
a sufficiently low density such that the nonlinear pro-
cesses distorting the pulse shape [8–10] occur on time
scales much longer than the pulse duration. In this case,
the laser field strength along the propagation direction
of the pulse depends on the 

 

x

 

 coordinate only through
the combination 

 

x

 

/

 

c

 

–

 

t

 

, so that the shape of the propagat-
ing pulse can be assumed to be unchanged. Conse-
quently, for convenience, we can consider the electron
motion near the point 

 

x

 

 = 0, keeping in mind that the
results obtained will also pertain to the remaining elec-
trons, because they move in the same field that is only
shifted in phase with respect to the point 

 

x

 

 = 0.

At 

 

x

 

 = 0, the rapidly oscillating component 

 

(

 

t

 

)

 

 of
the electric field of the laser pulse can be represented as

 

(1)

 

where 

 

e

 

y

 

 and 

 

e

 

z

 

 are unit vectors in the 

 

y

 

 and 

 

z

 

 directions,

 

η ∈

 

 [–1, 1] is the degree of elliptic polarization (

 

η

 

 = 0
and 

 

|η|

 

 = 1 correspond to linear and circular polariza-
tions, respectively), 

 

E

 

(

 

t

 

)

 

 is the laser field amplitude, 

 

E

 

0

 

is the maximum laser field amplitude, 

 

I

 

0

 

 is the peak
intensity of the pulse, and 

 

τ

 

FWHM

 

 is the full width at
half-maximum (FWHM) of the pulse.

For the above laser pulse parameters, the gas is ion-
ized on a time scale much shorter than the pulse dura-
tion. The ionization can be assumed to proceed via the
tunneling mechanism when the Keldysh parameter [11]

 

1

 

In [5, 6], it was shown that, in this case, free electrons moving in
the 

 

y

 

 and 

 

z

 

 directions obey Maxwellian velocity distributions with
temperatures 

 

T

 

yy

 

 and 
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zz

 

.
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Simple estimates made in [7] show that the transverse electron
drift can be ignored under the condition 

 

σ

 

r

 

/

 

λ

 

0

 

 > 80(

 

σ

 

t

 

/1

 

ps) , where 

 

λ

 

0

 

 is the laser wavelength and 

 

σ

 

r

 

and 

 

σ

 

t

 

 are the characteristic width and duration of the pulse,
respectively.

Pfin
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is much smaller than unity, γ = ω0 /eE(t*) ! 1,3

where m and e are the mass of an electron and the abso-
lute value of its charge, ω0 is the laser frequency, E(t*)
is the electric field amplitude of the laser wave at the
time t* of an ionization event, and Jk is the ionization
potential of an ion in the (k – 1)th ionization state. For
the short (τFWHM < 1 ps) laser pulses under consider-
ation, the electron–ion collision time in a low-density
(ne < 1019 cm–3) gas is longer than the pulse duration;
consequently, the processes of recombination and
impact ionization do not come into play throughout the
pulse.

Under the conditions of tunneling ionization, we
can assume that the electron shells are ionized succes-
sively (starting from the shell farthest from the
nucleus). In this case, the number N of electrons origi-
nating by the time t per unit volume in the vicinity of
the point x under consideration is determined by the
equations

(2)

where nk is the density of the ions in the kth ionization
state (k = 0 corresponds to a neutral atom), which are
heavy enough to be regarded as immobile; Wk + 1 is the

ionization rate of these ions; nat =  is the total
ion density (including neutrals); and zn is the nuclear
charge.

Under our conditions, the rate at which an electron
produced via tunneling ionization of an ion collides with
the potential barrier formed by both the electric field of
this ion and the laser field is much higher than the laser
frequency. Therefore, we can search for the tunneling
ionization rate in the adiabatic approximation [13], i.e.,
by substituting the absolute value of the instantaneous

laser field, | (t)| = E(t) , into
the formula for the ionization rate in a constant electric
field, which is equal to the tunneling ionization rate in
a circularly polarized field. For arbitrary atoms, the lat-
ter rate is described by the Ammosov–Delone–Kraœnov
(ADK) formula [14]. Consequently, in the adiabatic

3 More precise conditions for tunneling ionization are determined
by Ilkov et al. [12], who showed that the tunneling mechanism is
dominant when γ ≤ 0.5.
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approximation, the total ionization rate in the field of an
arbitrarily polarized laser pulse has the form

(3)

where n* = k  is the principal quantum number
of an ion in the (k – 1)th ionization state with the ion-
ization potential Jk, JH is the ionization potential of a
hydrogen atom, ωa ≈ 4.1 × 1016 s–1 is the atomic fre-
quency, E‡ ≈ 5.1 × 109 V cm–1 is the atomic electric
field, and e1 = exp(1). In deriving formula (3), we
assumed that the orbital and magnetic quantum num-
bers are both zero; this assumption is justified, e.g., in
[15].

In order to take into account the distribution of the
produced electrons over the initial momenta, we need
to know not only the total ionization rate Wk but also the
differential ionization cross section Γk(p∗ ), i.e., the

probability Wk(t) = (t, p∗ )d3p∗  for an electron with

the initial momentum p∗  to originate in a unit momen-

tum interval per unit time. To determine Γk(p∗ ), we turn

to the results obtained by Goreslavsky and
Popruzhenko [4], who proposed a formula for the dis-
tribution of the ionization-produced electrons over their
initial velocities. Strictly speaking, this formula applies
to a zero-range atomic potential (i.e., to a potential in
the form of a δ function). However, the results obtained
by Delone and Kraœnov [15], who derived the Coulomb
correction to the ionization probability with allowance
for the long-term nature of the atomic potential, show
that the coefficient in front of the exponential function
in the expression for the differential ionization cross
section is independent of the initial momentum of an
ionization-produced electron. In view of this fact and
taking into account that the distribution derived in [4]
correctly reflects the exponential dependence of the dif-
ferential ionization cross section on the initial electron
velocity, we can extend this distribution to the case of a
complex atom. In this way, we choose the coefficient in
front of the exponential function so as to describe the
total ionization rate by the ADK formula (3). As a
result, we obtain

(4)
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where Wk(| (t)|) is defined by formula (3) and the δ
function reflects the fact that the electron momentum

 in the instantaneous direction of the laser field at

the time of an ionization event is equal to zero [4]. In
the plane perpendicular to this direction, the electrons
obey a two-dimensional isotropic distribution over the
initial momenta p∗ ⊥ .

It should be noted that formulas (3) and (4) are valid
under the condition αk ≡ (JH/Jk)3/2E/Ea.u. ! 1, which may
fail to hold for strong laser fields. In sufficiently strong
fields, the ionization can exhibit the phenomenon of
stabilization. In other words, for αk > 1, the stronger the
laser field, the lower are both the ionization probability
per unit time and the total ionization probability (see,
e.g., [15–19]). In [16–19], the stabilization of ioniza-
tion was calculated for laser pulses with sharp fronts
(the rise time of the front being ten atomic times τa =
1/ωa or shorter). On the other hand, Kulander et al. [18]
noted that, for pulses with smoother fronts, the stabili-
zation effect is less pronounced because the rapid ion-
ization of atoms occurs at the pulse front, where αk !
1. Our simulations for light gases that are completely
ionized by laser pulses with nonrelativistic intensities
(except, possibly, for the 1S electron shell) showed that
a pulse with a duration longer than ten laser field peri-
ods will completely ionize ions in the (k – 1)th ioniza-
tion state by the time at which αk * 10–1; by this time,
the relative concentration of these ions, nk – 1/nat, will
become lower than 10–2 [20]. Consequently, for stron-
ger laser fields, the uncertainty in determining the prob-
ability Wk will affect the final results only slightly.
Thus, we can conclude that, in our analysis of pulses
with rise times longer than several laser field periods,
the stabilization effect is insignificant.

Another restriction on formulas (3) and (4) is that
they are written in the nonrelativistic limit and are inap-
plicable to ions with high ionization potentials (i.e.,
ions that are ionized by relativistic laser fields) [15].
Consequently, in applying our model to relativistic
laser pulses, we must assume that the gas atoms are
light enough for the plasma to be produced at the pulse
front; in other words, we must work under the condition
eE( )/(mω0) ! c, where  is the time at which the

ions with the charge number zmax – 1 are ionized at the
highest rate and zmax is the maximum charge of the ions
that can be produced during the ionization of a given
gas by a given laser pulse. Of course, this restriction
does not refer to nonrelativistic pulses. Under the con-
dition eE( )/(mω0) ! c, we can also assume that

|p∗ /(mc)| ! 1.

Ẽ

p
*Ẽ

tzmax
tzmax

tzmax
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3. ENERGY AND MOMENTUM 
OF THE IONIZATION-PRODUCED ELECTRONS

The ensemble-averaged momentum P(t) and energy
Q(t) transferred from the laser field to the electrons that
originate by the time t in the vicinity of the point x
under consideration, both divided by the number of
these electrons, are equal to

(5)

Here, P(t, t*, p∗ ) and Q(t, t*, p∗ ) are the instantaneous

(at the time t) momentum and energy of an electron that
originates with the momentum p∗  at the time t* and

Γ(t, p∗ ) = (t, p∗ )nk – 1(t) where Γk and nk – 1 are

determined by formulas (2)–(4).
Assuming that the laser-field envelope changes

insignificantly over the laser field period4 and applying
the approach described in [21] (see also [22]), we can
write the instantaneous (at the time t) momentum and
energy of an electron in the field of a plane, elliptically
polarized laser wave (the wave parameters are assumed
to depend on the variables x and t only through the com-
bination x – ct) in terms of the longitudinal (along the
x-axis) displacement δ(t, t*) of the electron from the
point x at which it is born at the time t*. Note that, by
definition, we have δ(t*, t*) = 0.

The kinetic energy Q(t, t*, p∗ ) of an electron origi-

nating with the momentum p∗  at the time t* is related

to the projection of its momentum onto the propagation
direction of the pulse (the x-axis) by

(6)

where κ∗  = γ∗  – px∗ /(mc), γ∗  = , and

 =  +  + .

Now, the momentum of an electron can be written as

where the components Pvan and Pfin have the form

(7)

4 Goreslavsky et al. [7] showed that this assumption is valid even
for ultrashort laser pulses with a duration of about one laser field
period.
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p
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2κ* mQp φ*( ) φ*( ),sin+=

Pyvan
2κ* mQp φ( ) φ( ),sin–=

(8)

(9)

Here, φ* = ω0t* is the field phase at which an electron
originates in the vicinity of the point x under consider-
ation, φ = ω0(t – δ(t, t*)/c) is the field phase at the point
at which the electron occurs at the time t, and Qp(φ) =
m(eE(φ)/2mω0)2 is the averaged oscillatory energy of
an electron at the time t. The longitudinal displacement
δ(t, t*) of an electron from the point at which it is born
at the time t* to the point at which it occurs at the time
t satisfies the transcendental algebraic equation pre-
sented in Appendix A.

In formulas (7)–(9), the strongly oscillating
momentum component Pvan depends on φ, while the
weakly oscillating component Pfin depends only on φ*
rather than φ. As t  ∞, we have Pvan  0, because
φ = t – δ(t, t*)/c  ∞ by virtue of both dδ(t, t*)/dt <
c and Q(φ  ∞)  0. Therefore, the component
Pvan makes no contribution to the REM. Consequently,
the REM is determined by the component Pfin, which is
nonzero in the limit t  ∞.

Using formulas (5) and taking into account expres-
sions (7)–(9), (3), (4), and (6), we can see that the
ensemble-averaged electron momentum and energy
satisfy the relationships

The strongly oscillating components Pvan(t) and
Qvan(t) = (t) vanish as t  ∞, while the weakly
oscillating components Pfin(t) and Qfin(t) (which oscil-
late only slightly about their values averaged over the
laser field period) remain nonzero after the passage of
the pulse. The weakly oscillating components deter-
mine the ensemble-averaged momentum and energy
that the laser field transfers irreversibly in the nonadia-
batic interaction to the electrons produced in the vicin-
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ity of the point x by the time t during gas ionization.
Hence, after the passage of the pulse (at t  ∞ for a
Gaussian pulse), the components Pfin and Qfin are just
the REM and REE.

Substituting expressions (7)–(9), (3), and (4) into
formula (5), we find that the momentum p∗  does not

contribute to the projections of the REM Pfin onto the y-
and z-axes and that the contribution of p∗  to the x-com-

ponent of Pfin is determined by the small parameter
|p∗ /(mc)|2 ! 1 and can always be neglected. For this rea-

son, the projections of Pfin onto the coordinate axes,

(10)

(11)

(12)

have the same form as for p∗  = 0.

Formula (5) with expressions (6), (3), and (4) yields
the following relationship for Qfin(t):

(13)

where

(14)

In formula (13), the term Q∗  accounts for the initial

velocity distribution of the ionization-produced elec-
trons; setting Γk(p∗ , t) ~ δ(p∗ ) in expression (4) gives

Q∗  = 0.

In order to investigate how the quantities Pfin and
Qfin depend on the parameters of the gas and the laser
pulse, it is convenient to eliminate oscillating terms in
the integrals in expressions (10)–(14) with the ioniza-
tion rate and electron density determined by formulas
(3) and (2), respectively. Below, the mean electron
energy and mean longitudinal (along the x-axis) elec-
tron momentum as well as the transverse REM will be
analyzed separately.
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3.1. Averaged Equations for  and Qfin

We start by investigating the mean electron energy
and mean longitudinal electron momentum. To do this,
we perform the time integration in formulas (12) and
(14) over subintervals [t '; t ' + π/(2ω0)], each is as long
as one-quarter of the laser field period. For a laser pulse
with arbitrary polarization, the integrals over the sub-
intervals are expressed in terms of Bessel functions. In
this case, the quantities under consideration cannot be
represented simply as power functions of the electric
field strength (see [13]). In order to avoid difficulties
(which are not, however, of fundamental importance),
we consider two opposite limiting cases in which the
integrals over the subintervals [t '; t ' + π/(2ω0)] can be
expanded in asymptotic or power series, because, on a

time scale of about , the field amplitude and elec-
tron density change only slightly, and, for a sufficiently
high ionization rate, the parameter αk ~ 10–1 is small.

(i) If the polarization of a laser pulse is far from
being circular, 3αk/(1 – η2) ! 1, formulas (12) and (14)
reduce to

(15)

(16)

where the coefficient Rk incorporates the first three
terms of the corresponding asymptotic series in αk (see
Appendix B). With good accuracy, we can assume for
estimates that this coefficient is equal to 0.8, because,
in a wide range of the pulse parameters, it lies between
0.7 and 1, provided that the relative densities nk – 1 of the
ions in different ionization states are nonzero. The ion-
ization rate (t ') averaged over the laser field period
[see expression (3)] has the form

(17)

where the density of the ions in the kth ionization state,
, averaged over the laser field period, is calculated

from formulas (2), in which Wk and Wk(E(t ')) are deter-
mined by expressions (17) and (3), respectively. We
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emphasize that, in contrast to formula (3), expression
(17) should be taken with the field amplitude E(t ')

rather than with the instantaneous value | (t ')| of the
rapidly oscillating field. Note also that, for linear polar-
ization, the averaged ADK formula taken with the
instantaneous laser field (as is the case in [1, 2]) may
lead to an REE overestimated by a factor of approxi-
mately 1.5 [20].

For η = 0, the first term in formula (17) gives the
ADK formula for the rate of tunneling ionization by
a linearly polarized laser field [14].5 The remaining
terms in the asymptotic series are negligible for 1 –
η2 @ 3αk. Note that, at a fixed peak intensity I0, in
accordance with formulas (17), (3), and (1), the main
dependence of  on η in the limit 1 – η2 @ 3αk under

consideration is determined by the factor (1 –

η2)–1/2 ~ (1 + η2 (1 – η2)–1/2.
(ii) For a laser pulse with nearly circular polariza-

tion, 3αk/(1 – η2) @ 1, formulas (12) and (14) reduce to

(18)

(19)

Here, the averaged ionization rates  have the form

(20)

the densities  are calculated from formulas (2) and
(20), and W(t ') is determined by expression (3) with the
field amplitude E(t ') in place of the instantaneous field

| (t)|. The coefficient , which accounts for the
power series in 1 – η2, is presented in Appendix B.

5 In [14], the corresponding formula is misprinted: the numerical

factor  should be raised to a power of 3/2 rather than 1/2.
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According to formulas (16) and (19), the correction
Q∗  (caused by the nonzero initial electron momentum

p∗ ) to the REE Qfin depends weakly on the degree of

elliptical polarization of laser radiation; i.e., in both of
the above cases, the factors in square brackets are close
to unity. For a circularly polarized pulse, the ratio
Q∗ /( ) ≈ ("ω0/2Jk)γ ! 1 is negligibly small. For a

linearly polarized pulse, we have Q∗ /( ) ≈ 0.9γ2, so

that the correction Q∗  can be large in the regime close

to the regime of tunneling ionization (γ ~ 1).

Figure 1 illustrates the dependence of the REE
Qfin(t  ∞) on the degree η of elliptic polarization of
the pulse. The curves were obtained numerically from
formulas (3) and (12)–(14) for different gases (hydro-
gen, helium, and oxygen). The residual energies in
hydrogen, helium, and oxygen were normalized,
respectively, to their values Qfin = 23, 600, and 1810 eV
in the case of a circularly polarized (η = 1) laser pulse
with the parameters I0 = 5 × 1018 W cm–2, λ0 = 0.78 µm,
and τFWHM = 100 fs. The curves symbolized by open cir-
cles reflect the residual energies calculated from the
averaged formulas (15)–(17) (the lower curve) and for-
mulas (18)–(20) (the upper curve); we can see that

cPxfin

cPxfin

0.2

0.2 0.4 0.6 0.8 1.00

0.4

0.6

0.8

1.0

Qfin(η)/Qfin(η = 1)

η

Fig. 1. REE Qfin(t  ∞), normalized to its maximum (at
η = 1) value, versus the degree η of elliptic polarization of a
laser pulse with the parameters I0 = 5 × 1018 W cm–2, λ0 =
0.78 µm, and τFWHM = 100 fs for hydrogen (dashed-and-
dotted curve), oxygen (dashed curve), and helium (solid
curve and curves marked by circles). The solid curve illus-
trates the results obtained from formulas (2), (3), and (12)–
(14). The curves marked by circles show the residual ener-
gies calculated from formulas (2), (13), and (15)–(17) (the
lower curve) and formulas (2), (13), and (18)–(20) (the
upper curve). For hydrogen, helium, and oxygen, the maxi-
mum residual energies are equal to Qfin(η = 1) = 23, 600,
and 1810 eV, respectively.
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these formulas give quite reliable results for η < 0.8 and
η > 0.8, respectively.

Since, for the chosen parameter values, the correc-
tion Q∗  to the main term  is small, we can assume

that the electrons are produced with a zero initial
momentum p∗ . From Fig. 1, we can also see that the

profiles Qfin(η)/Qfin (η = 1) are similar for different
gases.

Figure 2 shows the REE as a function of the peak
intensity of a laser pulse in nitrogen, calculated from
formulas (12)–(14) with and without allowance for the
initial velocity distribution of the ionization-produced
electrons (in the latter case, the correction Q∗  was set at

zero). The steps in the dependence of the REE on I0 cor-
respond to the successive ionization of different elec-
tron shells. We can see that the initial velocity distribu-
tion of the ionization-produced electrons makes the
largest contribution to the REE in the case of low-inten-
sity laser pulses, for which the Keldysh parameter is
relatively large. The higher the degree of elliptic polar-
ization, the smaller the contribution of the initial elec-
tron velocity distribution to the REE.

Pronounced peaks in the time evolution of the ion-
ization rate  ≡ S0 averaged over the laser field period
in helium correspond to the successive ionization of
different electron shells (Fig. 3). Replacing the peaks

cPxfin

S

by δ-functions, we obtain from formulas (13), (15),
(16), and (18) the following estimates:

(21)

where tk is the time at which the ionization rate of the
ions in the kth ionization state is the highest, αk(tk) ~ 10–1

is the value of the parameter αk at the time tk, θ(t – tk) is
the Heaviside step function, and Zmax ≤ zn is the number
of completely ionized electron shells. The coefficients

Rk and  are set to be equal to 0.83 and 1 – 0.7(1 – η2),
respectively (see Appendix B). As was shown above,
the correction Jkαk, which comes from the initial
momentum distribution of the ionization-produced
electrons, should be taken into account only for laser
pulses with a nearly linear polarization.

Estimates (21) imply that, for laser pulses whose
polarization is far from being circular (η < 0.8), the
mean energy of the electrons produced from ionization
of the kth shell depends on the field amplitude as

 ∝  η2E2(tk) + (JH/Jk)3/2 E3(tk); for pulses with
nearly circular polarization (η > 0.8), this dependence
is  ∝  E2(tk). Also, the above formulas show that the
mean electron energy is proportional to the squared
laser wavelength.

As the peak intensity I0 of the pulse increases, the
point tk, corresponding to the time at which the ioniza-
tion rate of the ions in the kth ionization state is the
highest, is displaced toward the pulse front along the
temporal profile of the pulse. As a result, for peak inten-
sities I0 that exceed the ionization threshold Ith by a fac-
tor of two to three, the REE depends only weakly on I0.
(According to [1], the threshold intensity is the pulse
intensity at which the potential barrier for an electron in
a laser field becomes lower than the ionization poten-
tial; for an ion in the (k – 1)th ionization state, we have
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Fig. 2. REE versus the peak intensity I0 for nitrogen ionized
by a laser pulse with the parameters λ0 = 0.62 µm and
τFWHM = 100 fs. The heavy curves refer to a linearly polar-
ized pulse (η = 0), and the light curves refer to an elliptically
polarized pulse (η = 0.4). The solid curves are calculated
with allowance for the initial velocity distribution of the ion-
ization-produced electrons, and the dashed curves are
obtained under the assumption that the electrons originate
with a zero initial velocity.
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Ith ≈ 1.4 × 1014(Jk/JH)4k–2 W cm–2.) For multielectron
atoms, the REE changes in a jumplike fashion every
time the peak intensity of the pulse increases above the
threshold for the ionization of each next low-lying elec-
tron shell (Fig. 2).

As the laser pulse duration increases or the pulse
front becomes less steep [for example, when pulses
with a hyperbolic secant envelope are used in place of
Gaussian pulses (1)], the point tk, corresponding to the
time at which the ionization rate of the kth electron
shell is the highest, is displaced toward the pulse front
along the temporal profile of the pulse. As a result, the
REE decreases. However, for longer laser pulses such
that the ionization front is longer than ten laser field
periods, the REE changes insignificantly as the pulse
duration increases. Thus, for a laser pulse with the
wavelength λ0 = 0.78 µm and the intensity I0 = 5 ×
1018 W cm–2, the REE changes only slightly when
τFWHM > 100 fs.

Our calculations showed that, for laser pulses with a
peak intensity above the threshold and a duration
longer than a hundred picoseconds, the parameter αk(tk)
is essentially insensitive to the characteristics of laser
radiation. Thus, for helium, this parameter takes on the
values α1 ~ 0.1 and α2 ~ 0.07, and, for oxygen, we have
α1 ~ 0.08, α2 ~ 0.06, α3 ~ α4 ~ α5 ~ 0.05, and α6 ~ 0.04.
Having found αk from Eq. (2) with expression (3) or
from relationships (17) and (20), we can use formula
(21) to estimate the mean energy  of the electrons
produced during ionization of the gas atoms up to the
kth ionization state. For example, for a helium gas ion-
ized by a linearly polarized laser pulse with the same
parameters as in Fig. 1, we arrive at the estimates

 ≈ 30 eV,  ≈ 110 eV, and Qfin = (  +

)/2 ≈ 70 eV, which agree satisfactorily with the
results calculated from more exact formulas (12)–(14):

 ≈ 27 eV,  ≈ 122 eV, and Qfin ≈ 75 eV.

3.2. Equations for the Transverse REM

Before we proceed with the examination of the
transverse REM P⊥∞  ≡ ey (t  ∞) + ez (t 
∞) as a function of the laser and gas parameters, note
that the integrals of rapidly oscillating functions in
expressions (10) and (11) differ substantially from zero
only when the width LS of the ionization curve S(t) is no
longer than several laser field periods. In fact, the ion-
ization-produced electrons move initially in different
directions, depending on the laser field phases at which
they are ejected from the atomic shells. The total elec-
tron momentum can substantially differ from zero only
when the number of electrons propagating in one direc-
tion is markedly larger than the number of electrons
propagating in the opposite direction. This situation is
possible only when laser pulses are sufficiently short

Qfink

Qfin1
Qfin2

Qfin1

Qfin2

Qfin1
Qfin2

Pyfin
Pzfin

and/or sufficiently intense to produce the ionization
front with a small width LS. While the absolute value of
the transverse REM is a monotonically decreasing
function of the width of the ionization front, the direc-
tion of the REM is governed by the laser field phases at
the times tk at which the ions in the kth ionization state
are ionized with the highest rate: the vector of the resid-
ual transverse momentum of the electrons produced
from ionization of the kth shell will rotate6 about the x-

6 For a linearly polarized laser pulse, the transverse REM will
reverse direction, because it can be oriented either parallel or anti-
parallel to the electric field.
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Fig. 3. Dimensionless ionization rate S(t)/(natω0) (heavy
curves), mean ion charge Z = N/nat (dashed and dashed-and-
dotted curves), and dimensionless electric field strength

e| (t)|/(mω0c) (light curves) for helium ionized by (a) lin-
early and (b) circularly polarized laser pulses with the
parameters I0 = 5 × 1016 W cm–2, λ0 = 0.78 µm, and
τFWHM = 30 fs. In Fig. 3a, the dashed-and-dotted curve is

for the zeroth harmonic S0 =  of the ionization rate. In Fig.
3b, the circles illustrate the results from the approximations
of the first and second peaks in the ionization curve by
Gaussian functions.
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axis (along which the pulse propagates) as the field
phase at the time tk will change (as a result of changes
in laser pulse parameters).

In order to justify the above considerations and to
analytically investigate the dependence of the transverse
REM on the laser and gas parameters, we approximate
the term Sk, which incorporates the ionization of the kth
electron shell into the total ionization rate S in Eqs. (2),
by a smooth curve, e.g., such that is described by a

Gaussian function Sk = natexp{–[(t –tk)/τS, k]2}/[ ],
where τS, k = LS, k/c and LS, k is the characteristic width of
the kth ionization front (Fig. 3b). Since the direction of
the momentum P⊥∞  is sensitive to the field phase at the
ionization time tk , we must take into account the phase
shift of the oscillating component cos(ω0t) with respect
to the pulse center. For this reason, we specify the elec-

tric field of the pulse in the form (t) = E(t)[eycos(ω0t +
ϕ) + ηezsin(ω0t + ϕ)], in contrast to formulas (1), in
which we set ϕ = 0. As a result, with allowance for the
fact that, on scale lengths LS, k, the electric field changes
only slightly, we arrive at the expressions

(22)

(23)

where Zmax ≤ zn is the number of completely ionized

electron shells. The coefficients  ≡ /(2 ),

 ≡ /(2 ), etc., incorporate high-frequency

harmonics in the spectrum of the ionization source for
a laser pulse with a noncircular polarization (Fig. 3a).

Here,  =  (n = 1, 2…) denotes the

[2n]th high-frequency harmonic of the ionization rate

Wk,  =  is the ionization rate averaged over the

laser field period [which is calculated from formula
(17) when the pulse polarization is far from being cir-
cular and from formula (20) when the pulse polariza-
tion is nearly circular], and the superior bar stands for
averaging over the laser field period. The first of these
coefficients takes on the following values:  = 1 –

3αkRk/(1 – η2) when the pulse polarization is far from

being circular,  = 1 –  ≈ 0.7(1 – η2) ! 1 when the

pulse polarization is nearly circular,  ≈ 0.75 for a

linearly polarized pulse, and  = 0 for a circularly

polarized pulse. The coefficients  with n > 1 can be

expressed in terms of the analogous power series in αk

or 1 – η2; however, we do not require the exact values
of these coefficients, because the first term on the right-
hand side of expressions (22) and (23) is much larger
than the remaining terms (the exponential functions
contain the factor 2n + 1 and thus rapidly decrease with
increasing n).

Formulas (22) and (23) imply that, for singly
charged ions (including hydrogen ions) produced by a
laser pulse with almost circular polarization (  ! 1),

the absolute value of the transverse REM,

(24)

depends weakly on the phase ω0t1 + ϕ and decreases
exponentially with increasing the ionization front width
τS, 1 and, accordingly, the pulse duration τFWHM. As the
field phase changes, the vector of the transverse REM
rotates about the x-axis such that the angle θ between
P⊥∞  and the y-axis changes according to the law

For a linearly polarized pulse, the transverse REM is
oriented parallel to E (to the y-axis) and, in
accordance with formula (22), changes from

about    ≈[−2  to about

2  as the field phase at the time t1
changes. In this case, the angle θ takes on two values: –
π/2 and π/2.
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Note that, according to formula (24), the maximum
(for a given width τS, 1 of the ionization front) absolute
value of the transverse REM, |P⊥∞ |, is proportional to
η(1 + ) for η > (1 – )(1 + ) and to 1 –  for

η ≤ (1 – )(1 + ). Consequently, from the asymp-

totic expressions for , we can see that |P⊥∞ |
increases as η increases from 0 (a linearly polarized
pulse) to 1 (a circularly polarized pulse).

The above analytic estimates are illustrated by
Fig. 4a, which shows the energy of the ordered trans-
verse electron motion, (2m)–1|P⊥∞ |2, calculated from
formulas (10) and (11) for hydrogen ionized by laser
pulses with the parameters I0 = 5 × 1017 W cm–2 and
λ0 = 0.78 µm and with different polarizations η = 0.1,
0.5, and 1. In accordance with our analytic estimates,
the envelopes of the curves (2m)–1|P⊥∞ |2(τFWHM) are
exponentially decreasing functions of τFWHM. The lower
the degree η of elliptic polarization of a laser pulse, the
more oscillatory is the dependence (2m)–1|P⊥∞ |2(τFWHM);
recall that this effect stems from the fact that, as τFWHM

changes, the point t1 is displaced along the temporal
profile of the pulse. The dependence 2m)–1|P⊥∞ |2(τFWHM)
for helium is shown by the dashed curve in Fig. 4b. We
can see that, in contrast to hydrogen, the curve
(2m)−1|P⊥∞ |2(τFWHM) for helium decreases nonmonoton-
ically as τFWHM increases, because the expression for
the energy of the ordered transverse electron motion
contains the cross terms of the form sin(ω0tk +
ϕ)sin(ω0tl + ϕ) with k ≠ l and cos(ω0tn + ϕ)cos(ω0tm + ϕ)
with m ≠ n, which stem from the summation of the infi-
nite series in the squares of  and  [see expres-
sions (22) and (23)].

Unlike the transverse REM, the longitudinal REM
and, accordingly, the REE, which is related to the lon-
gitudinal REM by expression (13), experience less pro-
nounced variations as τFWHM changes. This can be illus-
trated, e.g., by the dashed-and-dotted and dotted curves
in Fig. 4b, which correspond, respectively, to the mean

energy /(2m)(t  ∞) of the ordered longitudinal
electron motion and the REE Qfin(t  ∞) for helium.
That is why, for ultrashort laser pulses, the transverse
REM can be much higher than the longitudinal REM.
In contrast, for longer pulses, the longitudinal REM
becomes higher than the transverse REM, because the
latter approaches zero as the pulse duration increases
(Fig. 4b).

Our analytic expressions [formulas (24), (21), and
(12)–(14)] and calculated results (Fig. 4) also imply
that, for the above laser and gas parameters, the mean

residual energy Qdir ≡ [ (t  ∞) + |P⊥∞ |2]/(2m) of
the directed electron motion is much lower than the
REE Qfin(t  ∞).
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Here, we consider the relationship between the REE
Qfin(t  ∞) and the electron pressure tensor Πij or,
equivalently, the electron temperature tensor Tij ≡

. To do this, we use hydrodynamic equations for
a low-density gas ionized by the field of a nonrelativis-
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motion in hydrogen on the duration of laser pulses with I0 =
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tic laser pulse. The desired hydrodynamic equations
can be derived from the following collisionless kinetic
equation for the electron velocity distribution function
f(r, v, t):

(25)

where eijl is a completely antisymmetric unit tensor, the
subscript i stands for the ith vector component, and Ei

and Bl are the corresponding components of the electric

( ) and magnetic ( ) fields of the pulse. We will
derive the hydrodynamic equations for the pressure ten-
sor Πij in the weakly relativistic limit, because, as was
shown in the previous section, the REE is insensitive to
the relativistic effects if a gas is ionized by a nonrelativ-
istic laser pulse.

Applying the standard method of moments to
Eq. (25) yields equations for the hydrodynamic quanti-

ties—the electron density ne = , electron

momentum P = , and electron pressure

tensor Πij =  (with  ≡ v i – Vi  and Vi ≈
Pi/m). The corresponding identity transformations put
these equations in the form7 

(26)

(27)

(28)

Here, qαβ = (m/2)  is the heat flux vector,

the subscripts α and β are fixed, and summation over
the repeated Latin indices is used. Using formula (4),

we can reduce the quantity  = (v,

7 Equations (26) and (27) are also valid in the relativistic limit.
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where ψ(t) =  is the angle between

the instantaneous electric field  and the y-axis.

At the initial time (before the pulse starts to ionize
the gas), we have Παβ(t = 0) = 0. For t > 0, the tensor
Παβ is determined by the source terms—the first and
second terms on the right-hand side of Eq. (28). In
order to calculate Παβ in the first approximation, we
can use the smallness of the parameters |V/c |,

|V/c |2[S/(neω0)]–1, [S/(neω0)]–1 and
|V/c |[S/(neω0)]–1(k0σr)–1 in the ionization region (recall
that τS, k is the characteristic width of the kth ionization
front and σr is the characteristic transverse size of the
pulse); in Eq. (28), we can also neglect the heat flux
vector qαβ and the terms containing the combinations of
Παβ and V. When the two subscripts {α, β} do not run
the coordinate pairs {α = x, β = y}, {α = y, β = x},
{α = x, β = z}, or {α = z, β = x}, the last term on the
right-hand side of Eq. (28) can also be omitted, because
it is proportional to eBl/(mc). As a result, Eq. (28)
becomes

(30)

For {α = x, β = y} or {α = y, β = x}, we must supple-
ment the right-hand side of Eq. (30) with the term

−(mc)–1 (t ')eEy(t ')dt ', and, for {α = x, β = z}

or {α = z, β = x}, we must add the term

−(mc)−1 (t')eEy(t')dt'. However, expressions (35)

(see below) imply that these terms both vanish as t  ∞.

In the first approximation, the transverse hydrody-
namic velocity components Vy and Vz can be calculated
by keeping only the first two terms on the right-hand
side of Eq. (27). We integrate this equation by part,
neglecting the difference ∂ne/∂t – S = div(neV) and

assuming that |∂ln| |/∂t| is much less than |∂lnne/∂t |.
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As a result, we obtain from (27) the desired transverse
velocity components

(31)

For our purposes, it is sufficient to calculate the lon-
gitudinal hydrodynamic velocity Vx to within terms of
the second order in the laser field. Under the condition
χ ≡ S0/(neω0) ! 1, we retain the leading-order terms in
the Maxwell equations and the equation of motion (27)
to arrive at the following expression for Vx:

(32)

Substituting expressions (31) into formula (30), tak-
ing into account expressions (10) and (11) for (t)

and (t), and performing identity transformations,
we obtain

(33)

Here,

(34)
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t( ),+

where Qαβ∗  ≡ (t*)dt*. The energy Qfin deter-

mined by formulas (13) and (14) is equal to  +

 = Qfin, and the REE is Qfin(t  ∞). The sum of
the transverse energies, which are associated with dis-
tribution (4) of the ionization-produced electrons over
their initial velocities, is equal to one-half of the energy
Q∗  in expression (14): Qyy∗  + Qzz∗  = Q∗ /2. The remain-

ing half is covered by the longitudinal energy, Qxx∗  =
Q∗ /2.

The last formulas, together with expressions (33)
and (34), determine the relationship between the tem-

perature in the (y, z) plane Tµν = Πµν (where µ, ν =
y, z), with the REE and REM.

Analogously, using relationships (32) and (31) and
taking into account the above additional terms with
{α = x, β = y} and {α = x, β = z}, we obtain from for-
mula (30) the following expressions:

(35)

Recall that, since Qp(t  ∞)  0, the additional
terms, which are proportional to Πyy or Πzz, vanish as
t  ∞.

Now, we consider the electron pressure tensor for
moderately short and/or moderately intense laser
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pulses such that the kth ionization front is no shorter
than several laser field periods, so that ω0  @ 1. For
such pulses, formulas (33) and (35) imply that the off-
diagonal elements of the pressure tensor as well as the
transverse components of the REM are all exponen-
tially small. For laser pulses with different polariza-
tions, the diagonal elements of the pressure tensor and

of the temperature tensor Tαα = Παα can be deduced
from formulas (33)–(35) to within unimportant small
terms.

(i) When the pulse polarization is far from being cir-
cular, 3αk/(1 – η2) ! 1, we obtain

(36)

where (t ') is determined by formula (17) and the
asymptotic series for Xk and Rk are presented in Appen-
dix B.

(ii) For a pulse with nearly circular polarization,
3αk /(1 – η2) @ 1, we have

(37)
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where (t ') is determined by formula (20) and the

asymptotic series for  is presented in Appendix B.

Using expressions (36) and (37), we can estimate Txx

as

For ions with low charge numbers and for laser pulses
with nearly circular polarization, this ratio is, as a rule,
smaller than unity; this indicates that the main contribu-
tion to the xx-element of the pressure tensor comes
from the distribution of the ionization-produced elec-
trons over their initial velocities. For highly ionized
atoms and for laser pulses whose polarization is far
from being circular, this ratio can be larger than unity,
because, in this case, the xx-element of the pressure ten-
sor is governed mainly by the interaction between the
laser field and the electrons as they are ejected from the
atoms. Formulas (36) and (37) also allow us to con-
clude that Txx ! Tyy and Txx ! Tzz (the latter is valid for
laser pulses whose polarization is sufficiently far from
being linear).

Note also that formulas (15), (18), (36), and (37)
give

5. CONCLUSION

We have investigated the REE and REM in gases
ionized by elliptically polarized, relativistic, short laser
pulses.

We have shown that, for laser pulses with polariza-
tion that is not too close to linear, the distribution of the
ionization-produced electrons over their initial veloci-
ties is unimportant for obtaining the REE and REM,
which thus can be determined under the assumption
that the electrons are produced with a zero initial veloc-
ity, as is usually done in calculations (see, e.g., [2]). For
γ ! 1, we can as usual assume that, during ionization of
a gas by a linearly polarized laser pulse, the electrons
originate with a zero initial velocity. However, at the
boundary of applicability range of the tunneling-ion-
ization model (γ ~ 1), the initial velocity distribution of
the ionization-produced electrons may become impor-
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tant for calculating the REE but again has an insignifi-
cant influence on the REM.

Analytic formulas (15)–(24) and (33)–(37) make it
possible to study how the main parameters of the gas
and the laser pulse affect the REE, the REM, and the
electron temperature. We have shown that the trans-
verse REM is essentially nonzero only for very short
laser pulses (no longer than one or two tens of laser
field periods) and decreases exponentially as the pulse
duration increases. The same conclusion is valid for the
off-diagonal elements of the electron pressure tensor.
For longer laser pulses, only the diagonal elements of
the pressure tensor are significantly different from zero.

The diagonal elements of the pressure tensor satisfy
the inequalities Πxx ! Πyy and Πxx ! Πzz, and the ratio
of Πyy to Πzz is determined by the degree of elliptic
polarization η (the pulse is assumed to propagate along
the x-axis). The REE is expressed in terms of the pres-
sure tensor elements and REM as Qfin = (2ne)–1(Πyy +

Πzz) – (2m)–1(  + ). If the laser pulse is not too

short, the final energy of the directed electron motion,
which is proportional to the squared REM, is much
lower than the REE.

We have found that the REE is related to the longi-
tudinal REM by the simple expression (13) and is pro-
portional to the third power of the electric field ampli-
tude (at the time of the most intense ionization) for laser
pulses with nearly linear polarization and to the second
power of the electric field amplitude for pulses with
nearly circular polarization. On the other hand, as the
peak pulse intensity I0 changes, the point corresponding
to the time at which the ionization rate is the highest is
displaced along the temporal profile of the laser pulse.
As a result, for the peak intensity I0 above the ionization
threshold for one-electron atoms, the REE depends
weakly on I0, regardless of the pulse shape. For a gas of
multielectron atoms, the dependence of the REE on I0

is jumplike in character, the number of “jumps” being
equal to the number of completely ionized electron
shells. We have found that the REE is proportional to
the squared laser wavelength. We have also shown that
the sharper the pulse front, the higher the REE; in par-
ticular, the REE is higher for pulses with the same peak
intensity I0 but with a shorter duration.
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APPENDIX A

The displacement δ of an electron from the point at
which it is born is described by the equation

In the case at hand, we have |p∗ /(mc)| ! 1. Conse-

quently, for the conditions of tunneling ionization (γ <
1), we can perform manipulations similar to those in
the body of this paper in order to show that |δ∗ | ! |δ –
δ∗ |. Accordingly, in writing Eqs. (7)–(9), we assumed
that the displacement δ depends only on t and t* and is
independent of p∗ .

APPENDIX B

The coefficient Rk in formulas (15) and (36), the

coefficient  in formulas (18) and (37), and the coef-
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ficient Xk in formula (37) for Txx have the form
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