Erosion of tungsten and beryllium under action of intense plasma stream

Poznyak I $M^{1,2,@}$, Tsybenko V $U^{1,2}$, Podkovyrov V L^1 , Kuprianov I B^3 , Novoselova Z $I^{1,2}$, Fedulaev E $D^{1,2}$, Alyabev I $A^{1,2}$, Biryulin E $Z^{1,2}$ and Putrik A B^4

 ¹ State Research Center of the Russian Federation—Troitsk Institute for Innovation and Fusion Research, Pushkovykh Street 12, Troitsk 108840, Russia
² Moscow Institute of Physics and Technology, Institutskiy Pereulok 9, Dolgoprudny 141701, Russia

 3 Bochvar All-Russian Research Institute of Inorganic Materials, Moscow, Russia

 4 Institution "Project Center ITER", Kurchatov sq
 1 bldg 3, Moscow 123182, Russia

[@] poznyak.im@phystech.edu

Beryllium and tungsten protective coatings of ITER vacuum chamber will be exposed to powerful plasma-thermal loads. It will cause strong erosion of armour materials [1]. Splashing of molten metal leads to a reduction in protective coatings resource and contamination of a hot plasma by impurities. Experimental data describing these processes are important for creation theoretical models of material erosion mechanisms and forecasts for plasma-surface components operation under ITER conditions. In the presented work, tungsten and beryllium targets were irradiated by powerful deuterium plasma streams at QSPA-T and QSPA-Be facilities [2], [3]. Thermal loads on the samples corresponded to current disruptions in ITER: $1.7-2.0 \text{ MJ/m}^2$ with an exposure time 0.75 ms in case of tungsten and 1.0 MJ/m^2 during 0.3 ms in case of beryllium. Influence of magnetic field and angle of the plasma stream incidence on a structure of irradiated surface were studied. Data on the tungsten and beryllium droplets erosion obtained and analyzed. Erosion due to movement of the molten layer and formation of a crater on the target surface has been studied. The work is supported by contract H.4a.241.19.22.1123 dated 14.02.2022.

^[1] Federici G and et al 2005 J. Nucl. Mater ${\bf 337}{\textbf{-}339}$ 684–690

^[2] Zhitlukhin A and et al 2007 J. Nucl. Mater 363-365 301-307

^[3] Klimov N and et al 2009 J. Nucl. Mater **390–391** 721–726