Mechanical and structural features of catalytically polymerized three-dimensional C_{60}

Khorobrykh F S^{1,2,@}, Churkin V D^{1,2} and Popov M Yu^{1,2}

¹ Technological Institute of Superhard and New Carbon Materials,

Tsentralnaya Street 7a, Troitsk, Moscow 108840, Russia

 2 Moscow Institute of Physics and Technology, Institutskiy Pereulok 9,

Dolgoprudny, Moscow Region 141701, Russia

 $^{@}$ fedor.khorobrykh@phystech.edu

We observed the effect of high (to 80 GPa) pressure, catalyst (CS_2) [1] and laser irradiation [2] on the process of three-dimensional (3D) polymerization of fullerene C_{60} and the mechanical properties of the 3D C_{60} samples. The studies were carried out using resonant Raman spectroscopy and piezospectroscopy, high resolution transmission electron microscopy, x-ray diffraction, x-ray photoelectron spectroscopy. We have revealed that the 3D C_{60} structure consists of at least two types of clusters formed by covalent bonds with a different set of force constants, while C_{60} , as one of the elements of the 3D C_{60} structure (clusters), are preserved at least up to a pressure of 80 GPa. The intensity of Raman scattering depends on the wavelength of the exciting radiation (resonance effect) and a set of force constants: the higher their values, the shorter-wavelength exiting radiation is required for Raman scattering observation by such clusters. Clusters with bulk moduli from 454 to 644 GPa are formed depending on methods of C_{60} polymerization. According to the set of clusters, 3D C_{60} samples with bulk moduli from 506 to 608 GPa were obtained.

- Popov M, Mordkovich V, Perfilov S, Kirichenko A, Kulnitskiy B, Perezhogin I and Blank V 2014 Carbon 76 250–256
- [2] Popov M, Churkin V, Kirichenko A, Denisov V, Ovsyannikov D, Kulnitskiy B and Blank V 2017 Nanoscale Res. Lett. 2 561