Coupled simulation of gasdynamic and elastoplastic phenomena in a material under the action of an intensive energy flux

Boykov D S^{1,@}, Gasilov V A¹, Kazakov E D³, Olkhovskaya O G¹, Smirnova A R² and Tkachenko S I²

 ¹ Keldysh Institute of Applied Mathematics of the Russian Academy of Sciences, Miusskaya Square 4, Moscow 125047, Russia
² Moscow Institute of Physics and Technology, Institutskiy Pereulok 9, Dolgoprudny, Moscow Region 141701, Russia
³ Institute of Nuclear Synthesis of the Russian Research Center "Kurchatov Institute", Kurchatov Square 1, Moscow 123182, Russia

[@] boykovds@gmail.com

A complex computer model for thermomechanical phenomena and a method of end-to-end modeling of processes occurring in a solid material under the action of an of intense energy flux have been developed [1]. The dynamics of nonlinear wave processes leading to internal fractures and spalling phenomena in material samples are discussed using the example of calculating the effect on a polymer material. These results can be used in studies of intensive energy flux actions in engineering practice, verify models of volumetric fractures and spallations in brittle solids, and validate wide-range equations of state.

 Boykov D S, Olkhovskaya O G and Gasilov V A 2021 Mathematical Models and Computer Simulations 33 82–102