Interaction of laser radiation with strongly coupled xenon and krypton plasma

Zaporozhets Yu $B^{1,@}$, Mintsev V B^1 , Gryaznov V K^1 , Karakhtanov V S^1 , Reinholz H^2 and Röpke G^2

¹ Institute of Problems of Chemical Physics of the Russian Academy of Sciences, Academician Semenov Avenue 1, Chernogolovka, Moscow Region 142432, Russia

² University of Rostock, Universitätsplatz 3, Rostock 18051, Germany

[@] yubz@icp.ac.ru

The study of the optics of a dynamic object is a powerful research tool, since optical properties are very sensitive to changes in the electronic subsystem of the medium. At the same time, the correct description of collision processes in a partially ionized dense plasma is possible only on the basis of sufficient information about its optical properties. The results of new experiments on the reflection of polarized light from shock-compressed dense xenon plasma and the first experiments with krypton are presented. The study of polarized reflectivity properties of xenon plasma was accomplished using laser light of the frequency $\nu_{\rm las} = 4.33 \times 10^{14} \ {\rm s}^{-1}$ at incident angles $\theta = 55-78^\circ$, $\nu_{\text{las}} = 5.66 \times 10^{14} \text{ s}^{-1}$ at incident angles $\theta = 0-20^\circ$ and $\theta = 60-78^{\circ}$. The first experiments to study the polarization properties of a nonideal krypton plasma were performed using laser light of the frequency $\nu_{\rm las} = 2.83 \times 10^{14} \ {\rm s}^{-1}$ at incident angles $\theta = 0-25^{\circ}$. The optical properties of strongly correlated xenon and krypton plasma were studied at a plasma mass density $\rho =$ 0.83 g/cm³ and $\rho = 1.57$ g/cm³, accordingly. The composition and thermodynamic parameters of the plasma were determined using the modified Saha IV code [1].

The authors acknowledge financial support by Russian Foundation for Basic Research (RFBR grant 19-52-12039).

[1] Gryaznov V K, Iosilevskiy I L and Fortov V E 2012 AIP Conf. Proc. 917 1426