

Particle acceleration and neutron production from sub-micro-sized targets irradiated by an ultrashort laser pulse

S. G. Bochkarev, D. A. Gozhev, A.V. Brantov and V.Yu. Bychenkov

¹P. N. Lebedev Physical Institute, RAS, Moscow
²Center for Fundamental and Applied Research, VNIIA, Moscow
³International Laser Center, Lomonosov Moscow State University
E mail: bochkarevsg@lebedev.ru

XXXVI International Conference on Interaction of Intense Energy FluxesMarch 1st, 2021with Matter (ELBRUS 2021), March 01-06, 20211

Объемно нагреваемые микро-

структурированные мишени

□горячие электроны, рентген, ускоренные ионы, позитроны, ТГц, возможность использования компактных лазеров с энергией ~20-50мДж, с частотой повторения 0.1-1кГц

□ ядерные реакции «на столе», high energy density research, пинчи

Laser Fabrication of Nano Sheet (Wire) Arrays

Nanoplasmonic Ablative Self-Organization

S.I. Kudryashov et al., ACS Appl. Nano Mater. 2461 (2018).

> A.A. Ionin et al., Hydrodynamic instability and self-organization of a submicron relief on metal surfaces upon femtosecond laser exposure in liquids JETP Letters, 106 (2017)

РІС моделирование нагрева мишени

Setup	τ _L (fs)	I _L (10 ¹⁸ W/cr	n^2) focal spot (λ_L)	a _o	T_h^{PM} (keV)	\mathcal{E}_{h}^{EM} (keV)
Ι	30	1	4	0.85	85	185
II	60	2	2	1.2	160	370

$$T_{h}^{PM} = m_{e}c^{2}\left(\sqrt{1 + a_{0}^{2}/2} - 1\right)$$
$$\varepsilon_{h}^{EM} = m_{e}c^{2}a_{0}^{2}/2$$

Mandor code : 3D3V PIC parallel simulations,8 particles per cell, immobile ions Box size: $7 \lambda_L x 10 \lambda_L x 10 \lambda_L, 0.005 \lambda_L, x 0.02 \lambda_L, x 0.02 \lambda_L$, Linearly polarized laser pulse

Проникновение ЭМ поля в мишень

Оптимизация выхода горячих электронов

$$\epsilon_{h}^{\text{EM}} = m_{e}c^{2}(\gamma_{\text{max}} - 1) = m_{e}c^{2}a_{0}^{2}/2,$$
$$T_{h}^{\text{PM}} = \left((1 + a_{0}^{2}/2)^{1/2} - 1\right)m_{e}c^{2}, \quad a_{0} \approx 1 \Longrightarrow \epsilon_{h}^{\text{EM}} \approx T_{h}^{\text{EM}}$$

Acceleration beyond the ponderomotive limit !!! $\epsilon_{cut-off,e} \gg \epsilon_h^{EM} \approx 3 \text{MeV},$ $T_h > T_h^{EM}$

Оптимизация : температура горячих электронов

Absorption 260%

flat surface $\approx 10\%$ $T_h \approx 50 \text{ keV}$ $(a_0 \approx 1.2)$

> presence of wave reflected favors stochastic heating

Динамика тестовых частиц в сложных полях

3D Test particle simulation

$$\frac{d}{dt}\vec{p} = -e\vec{E} - \frac{\vec{v}}{c} \times \vec{B}, \quad \frac{d}{dt}\vec{r} = \frac{\vec{p}}{m_e\gamma}, \qquad \vec{E} = \vec{E}_i + \vec{E}_r + \vec{E}_C$$
$$\vec{B} = \vec{B}_i + \vec{B}_r + \vec{B}_S$$

Описание квазистатических поле в микро

структурах

 $E_{y}^{i} = E_{0}f(r)\cos(\phi_{-}), \quad E_{y}^{r} = \hat{r}E_{0}f(r)\cos(\phi_{+} + \pi), \quad B_{z}^{i} = E_{0}f(r)\cos(\phi_{-}), \quad B_{z}^{r} = \hat{r}E_{0}f(r)\cos(\phi_{+}),$

$$\begin{split} \phi_{\pm} &= \omega_{L} t \pm k_{L} x + \phi_{0}, f(r) = \sum_{n=1}^{N_{str}} \exp\left(-\frac{(d/2 - |R_{n}|)}{l_{s}}\right). \\ \vec{\mathbf{r}} &= 0.7 \\ \vec{\mathbf{E}}^{c}(\vec{\mathbf{r}}) = E_{\varrho 0} \frac{m_{e} c \omega_{L}}{e} \sum_{n=1}^{N_{str}} \begin{cases} 0, \\ \left(1 - \frac{d}{2l_{s}} + \frac{|\vec{\mathbf{R}}_{n}|}{l_{s}}\right) \frac{\vec{\mathbf{R}}_{n}}{|\vec{\mathbf{R}}_{n}|}, \\ \frac{C_{\varrho} \vec{\mathbf{R}}_{n}}{|\vec{\mathbf{R}}_{n}|^{2}} \exp\left(\frac{-|\vec{\mathbf{R}}_{n}|}{r_{d}}\right), \\ \vec{\mathbf{R}}_{n} = \vec{\mathbf{r}}_{\perp} - \vec{\mathbf{r}}_{n}, \quad C_{\varrho} = \frac{d}{2} \exp\left(\frac{d}{2r_{d}}\right), \end{cases} \\ \vec{\mathbf{R}}_{n} = \vec{\mathbf{r}}_{\perp} - \vec{\mathbf{r}}_{n}, \quad C_{\varrho} = \frac{d}{2} \exp\left(\frac{d}{2r_{d}}\right), \\ j_{\parallel}(r = |\vec{\mathbf{R}}_{n}|) = -ecn_{cr}B_{\phi 0} \begin{cases} 0, & r \leq d/2 - l_{s} \\ C_{j1}(r - d/2 + l_{s})(r - d/2), & d/2 - l_{s} < r \leq d/2 \\ C_{j2} \exp\left(-\frac{r}{r_{E}}\right)(r - d/2), & r > d/2. \end{cases} \\ B_{\phi}^{0}(r_{\perp}) = \frac{4\pi}{cr_{1}} \int_{0}^{r_{\perp}} j_{\parallel}(r)rdr. \end{split}$$

Метод показателей Ляпунова

Definition $\lambda_{\max} = \lim_{t \to \infty} \lim_{d(0) \to 0} \frac{1}{t} \ln \frac{d(\vec{x}_0, t)}{d(\vec{x}_0, 0)}, \quad d = |\vec{X}(\vec{x}_0, t) - \vec{X}(\vec{x}_0 + \delta \vec{x}_0, t)|.$ $d \approx \exp(\lambda_{\max} t)$

□ Method for calculation of the largest Lyapunov exponent

Анализ стохастического нагрева

Угловое распределение ускоренных электронов

3D моделирование : разлет плазмы

deuterated titanium wires 40% of deuterium 20% D and 20% T.

Plasma expands with velocity ≈2µm/ps, The cross section of DT reaction is large for deuterium energy of order of 100-500 keV. Deuterons obtain such energy during laser heated cylinder expansion on characteristic scale equal to inter-wire spacing. 14

Спектры ускоренных дейтронов

We consider acceleration of deuterium and tritium ions implanted into pure metal sub-micro-sized surface structures

Спектры ускоренных дейтронов от E_L

 $D_L = 4 \lambda_L$ (FMHW) duration – 30 fs

E_L=27 mJ - red, 54 mJ - blue, 108 mJ –green line и 270 mJ – black line

Multi sheet target

0.0

4

0.2

0.4

0.6

0.8

3

2

0

Расчет выхода DD и DT реакции

$$Y \equiv \frac{N}{N_{i0}} = \frac{1}{N_{i0}} \int_0^\infty \mathrm{d}\epsilon \frac{dN_i}{d\epsilon} n_a \int_0^\epsilon d\epsilon' \sigma(\epsilon') \left| \frac{d\epsilon'}{dr} \right|^{-1}$$

The target consist from titanium and 40% of deuterium or 20% D and 20% T.

Cross-sections D(d,n)³He, T(d,n)⁴He

from NRS book

 $D+D\rightarrow^{3}He + n + 3.27 \text{ MeV}, E_{n} = 2.45 \text{ MeV},$

D+T→⁴He + n +17.6 MeV, E_n = 14.1 MeV,

Stopping length of Deutrons in Titanium (experimental data)

Результаты оптимизации для E_L= 5 мДж

N⁰	тип мишень/ла зер	средняя плотно сть, n_{av}/n_0	высота, h/λ _L .	диаметр, d/λ _L	абсолютн ый выход DD	выход DD на 1 Дж
1	проволоки/I	0,07	1,5	0,3	5×10 ³	106
2	проволоки/I	0,13	1,5	0,4	5×10 ³	106
3	проволоки/II	0,28	3	0,6	104	2×10 ⁶
4	проволоки/II	0,04	7,5	0,4	5×10 ³	106
5	слои/I,р	0,2	3	0,2	4×10 ³	8×10 ⁵
6	слои/I,р	0,4	3	0,4	2×10 ³	4×10 ⁵
7	слои/I,s	0,4	3	0,4	5×10 ²	10 ⁵

N_D~3*10¹⁰

Выход нейтронов (микро-цилиндры)

 $D_L = 4 \lambda_L$ (FMHW), $\tau = 30 \text{ fs}$

 $N_{D} \sim 3^{*}10^{10} (E_{d} > 50 \text{keV}, I_{L} \approx 10^{18} \text{Wcm}^{-2}), dN_{D} / N_{D0} \approx 30-60 \%$

Neutron yield (25 mJ, 0.1 kHz) 5*10⁷ neutrons/s (DD) and 10⁹ neutrons/s (DT)

Генерация нейтронов из микро-кластеров

3D3V PIC particles per cell, deuterium clusters, Box size: $12 \lambda_1 \times 6 \lambda_1 \times 6 \lambda_1$, Resolution 0.01 λ_L , x 0.01 λ_L , x 0.01 λ_L , Linearly polarized laser pulse, $I=2 \bullet 10^{18} \text{ W/cm}^2$, $\tau = 30 \text{ fs}$, wide laser pulse $n_{av}/n_{cr} \simeq \pi d^3/6s^3$

*n*_{av}=0.12 *n*_{cr}

Maximum conversion coefficient corresponds to the maximum neutron yield

Объемный стохастический нагрев микроструктрированной мишени, генерация суперпондеромотоных электронов

Эффективное ускорение дейтронов, повышение эффективности термоядерных реакций

□Выход нейтронов для лазера 25мДж, 1кГц 5·10⁷ (DD) и ·10⁹ (DT) нейтронов/сек

Применение микро-слоев более перспективно, тк технологических слои легче произвести

Thank you very much for your attention!

This work was supported by the Russian Science Foundation, Grant # 17-12-01283

D.A. Gozhev, S.G. Bochkarev, N.I. Busleev., A.V. Brantov, S.I. Kudryashov,

A.B. Savel'ev, V.Yu, Bychenkov High Energy Density Phys. 37, 75 (2020).

S.G. Bochkarev, A.V. Brantov, D. A. Gozhev

Journal of Russian Laser Research 42, (2021), in press.

