

XXXVI INTERNATIONAL CONFERENCE ON INTERACTION OF INTENSE ENERGY FLUXES WITH MATTER MARCH 1–6, 2021, ELBRUS, KABARDINO-BALKARIA, RUSSIA

THERMOS Toolkit:

self-consistent solution of the radiation transfer equation in 1D geometries with kinetics

Vichev I.Yu.¹, Solomyannaya A.D.¹, Grushin A.S.¹, Kim D.A.^{1,2}

¹Keldysh Institute of Applied Mathematics, Miusskaya sq. 4, Moscow 125047, Russia ²National Research Nuclear University MEPhI, 31 Kashirskoe Highway, Moscow 115409, Russia

vichevilya@keldysh.ru

The reported study was funded by RFBR, project number 20-01-00485. Calculations have been performed at HPC K-100 (KIAM RAS) and MVS-10P (JSCC RAS).

March 1-6, 2021, Elbrus, Kabardino-Balkaria, Russia

$$\{r = [0, R] : r_{i-1} < r < r_i, i = 1, N\}$$

 $\Delta r = r_i - r_{i-1}$

 $T_e^{(i)}$ - electron temperature $n_i^{(i)}$ - ion density

Self-consistent solution of the RTE with kinetics

Collisional-Radiative Equilibrium

$$\sum_{s'} (x_{k's'} w_{k's' \to ks} - x_{ks} w_{ks \to k's'}) = 0 <$$

Radiation Transport Equation $\frac{dI_{\omega}}{ds} = j_{\omega} - \kappa_{\omega}I_{\omega}$

solved exactly for given piece-wise constant coefficients $j_{\omega}^{(i)}$ and $\varkappa_{\omega}^{(i)}$

$$U_{\omega} = \frac{1}{c} \int I_{\omega} \, d\Omega$$

 $\vec{F}_{\omega} = \int I_{\omega} \, \vec{\Omega} d\Omega$

 $\frac{\delta Q}{\delta \varepsilon} < \frac{\delta \varepsilon}{\delta \varepsilon}$ radiative losses $Q = 4\pi \int j_{\omega} d\omega$

k is ionization degree s is quantum state $x_{ks}(U_{\omega})$ is populations $w_{ks \to k's'}(U_{\omega})$ is total probability $j_{\omega}(x_{ks})$ is emissivity $\kappa_{\omega}(x_{ks})$ is opacity $I_{\omega}(j_{\omega}, \kappa_{\omega})$ is radiation intensity $U_{\omega}(I_{\omega})$ is radiation energy density $F_{\omega}(I_{\omega})$ is radiation energy flux

Reference:

THERMOS: Consistent solution of the radiation transport equation with level kinetics in simple geometries / I.Yu.Vichev [et al.] // Keldysh Institute Preprints. 2020. № 56. 30 p. <u>http://doi.org/10.20948/prepr-2020-56</u> URL: <u>http://library.keldysh.ru/preprint.asp?id=2020-56</u> (in Russian) Vichev, I.Y., Solomyannaya, A.D., Grushin, A.S., Kim, D.A. (2019). On certain aspects of the THERMOS toolkit for modeling experiments. *High Energy Density Physics*, 100713. https://doi.org/10.1016/J.HEDP.2019.100713

Spectral radiation energy flux in limiting cases
optically thin
$$\tau \ll 1$$
 optically thick $\tau \gg 1$
flat
$$F_{\omega} = 2\pi \sum_{i=1}^{N} j_{\omega}^{(i)}(r_{i} - r_{i-1})$$

$$\tau = \kappa \Delta r - \text{optical depth}$$

$$F_{\omega} = 2\pi \frac{1}{R} \sum_{i=1}^{N} j_{\omega}^{(i)}(r_{i}^{2} - r_{i-1}^{2})$$

$$F_{\omega} = \pi \frac{j_{\omega}^{(i)}}{\kappa_{\omega}^{(i)}}\Big|_{i=N} = \pi B_{\omega} \left(T_{e}^{(i=N)}\right)$$
ball
$$F_{\omega} = \frac{4\pi}{3} \frac{1}{R^{2}} \sum_{i=1}^{N} j_{\omega}^{(i)}(r_{i}^{3} - r_{i-1}^{3})$$

$$\forall i: \frac{j_{\omega}^{(i)}}{\kappa_{\omega}^{(i)}} = B_{\omega} \left(T_{e}^{(i)}\right), B_{\omega}(T) = \frac{15\sigma}{\pi^{5}} \frac{\omega^{3}}{e^{\omega/T} - 1}$$

Acknowledgments

The reported study was funded by RFBR, project number 20-01-00485. Calculations have been performed at HPC K-100 (KIAM RAS) and MVS-10P (JSCC RAS).

XXXVI INTERNATIONAL CONFERENCE ON INTERACTION OF INTENSE ENERGY FLUXES WITH MATTER MARCH 1–6, 2021, ELBRUS, KABARDINO-BALKARIA, RUSSIA

Thank you for attention!

March 1–6, 2021, Elbrus, Kabardino-Balkaria, Russia