Molecular dynamics study of the glass transition temperature and elastic properties of the Zr-Nb amorphous alloy

Kliavinek S., Kolotova L. EPFL, JIHT RAS

IIEFM 2021

Research motivation

Research motivation

Nanocrystalline alloy

Transitional state (crystalline nuclei in the amorphous phase)

Amorphous phase

Research motivation

Fuel element shell

Structure and structural criteria Zr-Nb:

Magnetic sensors

D. He, MDPI (2020).

Kliavinek S., Kolotova L., JETP (2020).

Molecular dynamics model

$$E_{\text{tot}} = \frac{1}{2} \sum_{i,j(j\neq i)} \Phi_{s_i s_j} \left(r_{ij} \right) + \sum_i F_{s_i} \left(\bar{\rho}_i \right) + \frac{1}{2} \sum_{i,\alpha} \left(\mu + \frac{1}{2} \sum_{i,\alpha,\beta} \left(\lambda_i^{\alpha\beta} \right)^2 - \frac{1}{6} \sum_i v_i^2 \right)$$

ADP-potential (Zr-Nb, Smirnova, Starikov, 2017)

> Nb: 25-75% K: 11 K/ps

Glass transition temperature was determined on heating

Glass transition temperature

$C = \frac{\delta H}{\delta T}$

Diffusion coefficient

50% Nb

 $< r^2 > = < r_0^2 > + 6Dt$

30% Nb

Viscosity coefficient $\eta = \lim_{t \to \infty} \frac{V}{kT} \int_0^t \langle P_{\gamma \varepsilon}(0) P_{\gamma \varepsilon}(\tau) \rangle d\tau$

 $\int_{0}^{t} < P_{\gamma\varepsilon}(0)P_{\gamma\varepsilon}(\tau) > d\tau = A \exp^{(-t/T)} + B$

45% Nb

11

Glass transition temperature

T g (K)			
Heat capacity	900		
Diffusion coefficients	900		
Viscosity coefficient	1000		

T g (K)		
Square under second peak	1050	
Vendt-Abraham	1200	
Icosahedral clusters	1200	

50% Nb

Sarker S. et al, Scientific

Elastic properties

Young modulus

50% Nb

15

EPFL

For crystalline Zr-Nb $E \approx 100$ GPa

Young modulus

Deformation hysteresis

25% Nb

75% Nb

Tensile crystallization

50% Nb

 $T \approx 1000 \text{ K}$

50% Nb

$T \approx 1000 \text{ K}$

Tensile crystallization

50% Nb $T \approx 1000 \text{ K}$

Compression crystallization

25% Nb

 $T \approx 1000 \text{ K}$

75% Nb

Conclusions

 Glass transition temperature for different concentrations of Nb was determined with the use of the diffusion, viscosity and heat capacity coefficients; the data obtained are in good agreement with each other, with the data determined earlier, as well as with the available experimental data.

• The dependence of Young's modulus on the percentage of Nb content was explained using the deformation mechanism of amorphous alloys. The hysteresis observed during compression and reverse tension is also explained by the deformation mechanism.

olt is shown that crystallization of the amorphous alloy occurs during hightemperature deformation.

Diffusion coefficient

Diffusion coefficient in a melt with 65 % Nb on the of cut-off periods

Diffusion coefficient on temperature for 65% Nb, cut-off distance 12 and 5 periods

High temperature compression

1.25 1.00 1.50 1.75 2.00 *ɛ* (%)

$T \approx 1000 \text{ K}$

50% Nb

Structure during deformation

compression

50% Nb

tension

Glass transition temperature

%, Nb	T(K) Heat capacity,	T(K) Diffusion coefficient,	T(K) Viscosity coefficient,	
	$\Delta T = 30K$	$\Delta T = 90K$	$\Delta T = 90$	
25	600	750	_	
27,5	650	750	_	
30	650	725	1000	
35	750	800	1050	
40	800	800	1000	
45	850	900	1100	
50	900	900	1000	
55	950	900	1000	
65	1050	900	_	
75	1000	1000	-	

Glass transition temperature

	T(K) Sq	quare under second peak,	T(K) Vendt-Abraham criterium,	T(K) Icosahedral clusters
	$\Delta T = 10K$		$\Delta T = 50K$	$\Delta T = 50K$
%, Nb	cooling	heating	heating	heating
25	1100	1050	1000	1000
27,5	1100	1050	1000	1000
30	1050	1100	1200	1100
35	1000	1100	1150	1150
40	1200	1250	1200	1200
45	1150	1050	1200	1100
50	1100	1050	1200	1200
55	1000	1100	1200	1200
65	1000	1100	1100	1100
75	900	800	1000	1000

Plan

- Research motivation
- Molecular dynamics model
- Glass transition temperature
- Elastic properties
- Conclusions

