Production of quasimonoenergetic electron bunches in the interaction of a laser pulse with an inhomogeneous plasma

Popov V. S.

Joint Institute for High Temperatures of the Russian Academy of Sciences

SlavaPopov1991@yandex.ru

Fig. 2. The dependence of the charge of the ejected electrons with an energy greater than 2 MeV on a_0 and n_0 . Charge is expressed in picoculons.

Approximation: Boundary formula (bold black line):

 $n(a_0) = A(Q)a_0^{\kappa(Q)}$ $n(a_0) > 0.03a_0^{-1.7}$

Quasi-monoenergetic electron bunch after optimization of the plasma profile

Fig. 5. The dependence of the electron energy distribution on time for $a_0 = 1$, $n_0/n_{cr} = 0.04$ before optimizing the coordinate of the transition point from the Gaussian profile to the plateau.

Parameters of 3D PIC simulations	
Laser pulse length, D	7.64 mkm
L_{y}, L_z	8.25 mkm
Pulse duration, τ	30 fs
Pulse energy, W	< 130 mJ
Intensity on focus, I_0	$<4 \times 10^{18} W/cm^2$
Characteristic size of the target <i>l</i>	100 - 200 mkm

$$e(x, y, z) = e_0 \exp(-\frac{x^2}{D^2} - \frac{y^2}{L_y^2} - \frac{z^2}{L_z^2}) \qquad a_0 = \frac{e|E|}{mc\omega_0}$$

 $n = n_0 \exp(-\frac{(x-x_0)^2}{l^2})$ (first approximation of the electron density distribution)

Range of $a_0: 1 < a_0 < 1.7$

Range of n_0/n_{cr} (dimensionless density): $0.017 < n_0/n_{cr} < 0.045$

Fig. 3. Example of modifying the plasma profile to increase the acceleration length and electron energy.

Fig. 7. A combined graph of the dependence of the associated coordinates of the left (red curve) and right boundaries (blue curve) of the accelerating field of the first (main) period of the plasma wave on time, as well as the energy density of the accelerated electrons. The color line indicates the maximum of the accelerating field (the color shows the value of the maximum)

Fig. 6. The dependence of the electron energy distribution on time for $a_0 = 1$, $n_0/n_{cr} = 0.04$ after optimizing the coordinate of the transition point from the Gaussian profile to the plateau..

Conclusions

The dependence of the characteristics of the ejected electrons on the amplitude of the laser pulse and the peak density of plasma electrons during the interaction of a laser pulse of subterawatt power with a plasma jet was studied. A method for obtaining quasi-monoenergetic electron bunches and increasing the energy of ejected electrons by varying the plasma density profile was proposed and tested.

References

- [1] Goers A G, Feder G A, Miao B, Salehi F, Wahlstrand J K and Milchberg H M 2015 Physical Review Letters 115 194802
- [2] Hansson M, Aurand B, Davoine X, Ekerfelt H, Svensson K 2015 Phys. Rev. ST Accel. Beams 18 071303
- [3] Popov V S and Andreev N E 2019 Quantum Electronics 49 307-313
- [4] Попов В С 2020 Вестник ОИВТ РАН 5 8-12