XXXVI INTERNATIONAL CONFERENCE ON INTERACTION OF INTENSE ENERGY FLUXES WITH MATTER MARCH 1-6, 2021, ELBRUS, KABARDINO-BALKARIA, RUSSIA

For the first time, the laser-induced fluorescence (LIF) was used to monitor polyaromatic hydrocarbons (PAHs) formed during the pyrolysis of hydrocarbons behind shock waves. The temperature dependencies and time evolution of the total spectral fluorescence signal from growing PAHs were obtained. To control the onset of the appereance of condenced phase, the laser light extinction of HeNe laser at 633 nm was registered. The optical density of investigated mixtures was measured. The mixtures of benzene and dimethyl ether (DME) were studied. It was shown that large PAHs consisting of four or more aromatic rings are the precursors for the appearance of condensed phase, and are probable nuclei of carbon nanoparticles. In a mixture of benzene with DME, more small aromatics consisting of one-two rings and fewer larger PAHs as compared to the pyrolysis of benzene in argon was detected. It was found that the DME presence significantly reduced the optical density of the mixture at 633 nm, which indicated a decrease in the soot yield. Kinetic modeling of PAHs and soot formation under experimental conditions was carried out. The influence of the DME presence on chemical reaction pathways PAHs formation is discussed.

Motivation

PAHs are mainly formed from incomplete combustion processes and generally considered as precursors for soot particles [1, 2]. Precise measuring of PAHs formation and growth is significant for better understanding and developing of soot formation kinetics [3]. At the present time, great attention is paid to the study and development of new types of fuels. Biofuels are a promising trend in this field [4]. DME is a non-carcinogenic and non-toxic substance with a high calorific value, allowing it to be used as a fuel for diesel engines. The presence of oxygen in a compound improves the oxidation efficiency, which is expected to reduce soot emissions. Benzene is the simplest aromatic compound, the pyrolysis of which naturally produces PAHs efficiently. Therefore, the study of DME addition influence on the formation of PAHs during the pyrolysis of benzene seemed to be a highly relevant problem.

Experimental setup

size of the PAH molecules **Extinction**: LIF: ___ С10Н8 Pulse Nd:YAG laser He-Ne Laser 633nm — C12H10 HeNe laser ___ С13Н10 266 nm for exitation; For control of condensed **—** С12Н8 Nd:YAG laser fluence of 25-35 mJ/cm²; phase appearance. — C14H10 laser mirrol - C14H10 (Phenanthrene 266 nm Experimental conditions: duration of pulse - 12 ns; ___С16Н10 bressure - C16H10 (Fluoranthene, transducers Monochromator ACTON: driven *— C18H12* oscilloscope LIF measurements Extinction measurements section *C20H12* 300 lines/mm; Mixture - C20H12 (Benzo[a]pyrene

LIF spectrum evolution with increasing

Scheme of the shock tube with LIF and extinction techniques

The DME presence leads to a shift in the LIF spectra of PAHs to shorter wavelengths compared to a mixture of benzene diluted in argon at the same initial temperature. The DME slows down the growth of large (consisting of 3-4 and more rings) PAHs. In a mixture of benzene with DME, more amount of small aromatics (consisting of 1-2 rings) PAHs were detected. Laser extinction measurements showed a significant decrease in optical density during benzene pyrolysis with the DME presence over the entire temperature range studied. Based on the obtained LIF spectra and exctinction

measurements, it was concluded that the DME accelerates formation of the small aromatic compound and slows down the larger PAHs formation and soot particles.

Kinetic modeling		Conclusions	References
initite modeling		CONCLUSIONS	[1] K.Gleason et al. Combust. Flame V. 223, 2021.
Aromatic compound formation pathways at 1600-1800 K		LIF spectra were obtained for different temperatures	 [2] M. Frenklach et al. Symp. (Int.) Combust. 20 (1985). [3] Y.Zhang et al. Appl. Phys. B. V. 125, 2019.
$1\% C_6 H_6 + 99\% Ar$	$1\% C_6 H_6 + 5\% DME + 94\% Ar$	(1300–2000 K) and reaction times of 150–1150 µs for	[4] H.K.S. Panahi et al. BRJ V. 23, 2019.
		diluted in argon benzene, DME and their mixture.	[5] F. Beretta et al. Combust. Flame V. 61, 1985. [6] F. Ossler et al. Appl. Phys. B. V. 72, 2001
C_{6H_6} + $C_{12H_{10}}$ + C_{2H_2} + C_{2H_2}	$C_{9H8} = H_{3}^{-0} C_{H_{3}}$	Large PAHs consisting of fore or more aromatic rings	[7] T. Aizawa et al. SAE Trans. V. 112, 2003.
$O_{+} \qquad \begin{array}{c} C_{9H8} \\ \hline \\ $		are the precursors for the appearance of condensed	[8] R. Sun et al. Opt. Lasers Eng. V. 48, 2010.
$ c_{2}H_{2} + i = - i - i - i - i - i - i - i - i - i$	$\langle \mathcal{H} \mathcal{H} \rangle \sim \langle \mathcal{H} \rangle \sim \langle \mathcal{H} \rangle \sim C_{10H10}$	phase, and are probable nuclei of carbon nanoparticles.	[10] M. Orain et al. Appl. Phys. B. V. 102, 2011.
$C_{6H5C2H} + C_{2H_2} + C_{2H_2} + C_{12H_8}$	C_{14H10} C_{10H8} C_{13H10}	DME additives increase the yield of "small" PAHs (1-2	[11] S. Bejaoui et al. Combust. Flame V.161, 2014.
C_{14H10}	$C_{12}H_8$	rings) and slow down large PAHs and soot formation	[12] B. Chen et al. Combust. Flame, V. 177, 2017. [13] M. Taniguchi et al. Photochem. Photobiol. V. 94. 2018.
C_{16H10}	C_{16H10} C_{18H10}	compared with benzene mixture.	[14] Y. Zhang et al. Specrtochim. Acta, Part A V. 224, 2020.
		Kinetic modeling has shown that DME presence leads	[15] E. Ranzi et al. J. Chem. Kinet. V. 46, 2014. [16] C. Saggese et al. Combust Flame V 162 2015
		to the formation of 5-membered aromatic ring $(C_{\epsilon}H_{\epsilon})$.	[17] A. Cuoci et al. Comput. Phys. Commun. V. 192, 2015
I he calculations were carried out using kinetics mechanisms [15, 16] in the 0-		$C_{40}H_{40}$, $C_{40}H_{40}$ as well as the emerging of alternative	RUSSIAN The support from the Joint Project
OnenSmoke++code[17]	constant pressure conditions with	formation pathways for C.H. and C.H.	FOR BASIC RFBR-DFG
openonioke i code [17].		$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i$	NO. 20-58-12003