

Application of ARAS on the oxygen atoms in chemical kinetics of high temperature reactions

<u>A. Emelianov¹, N. Bystrov¹, A. Eremin¹, P. Yatsenko^{1,2}</u> ¹Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow, Russia ²Bauman Moscow State Technical University, Moscow, Russia aemelia@ihed.ras.ru

Motivation

The formation of atomic oxygen occurs in most hydrocarbon and biofuel combustion processes. Various kinetic schemes make it possible to quantitatively calculate the appearance and consumption of atomic oxygen during proceeding reactions. However, the verification of these models is based on accurate experimental data obtained under various conditions. One of the most reliable instrument for experimental study in chemical kinetics is the shock tube. The method of atomic resonance absorption spectroscopy (ARAS), is the gold standard of chemical kinetics and makes it possible to directly and reliably measure the concentration of atomic oxygen with the possible range of the measured concentration within 3.10¹¹-10¹⁴ cm³. As a result the rate constants of the reactions of various oxygen-containing compounds can be directly determined.

Goal of work

Development of application of O-ARAS diagnostics in the shock tubes, in the wide range of reactions from dissociation of simple molecules to pyrolysis and combustion reactions of alcohols complex compounds at temperatures of 1200-2500 K and pressures of 2-4. bar.

Deco	inposit		JI 5111a		uics
Reaction	Log ₁₀ A (cm³/s⋅mol)	n	E/R K	Temp.range	Ref
CO = C+O	19.96	-3.1	129000	55009000	Duisburg
CO ₂ = CO+O	13.40	-	43800	2500-3400	Nagaoka
	14.56		52500	24004400	Duisburg
$N_2O = N_2 + O$	14.97	-	29900	1700—2500	Stuttgart
	15.16	-	30800	1850—2500	Duisburg
	14.70	-	29000	1300—2500	Dayton
	15.0	-	30400	16002500	Nagaoka
	14.50	-	27900	1540—2500	Argonne
	14.85	-	29100	12002380	New York
	14.86	-	28878	1490—2490	Orleans
	14.7	-	28500	17602500	Moscow
O ₂ = O+O	12.50	-	48200	2850-5550	New York
	15.73	1.0	59400	2370-4160	Duisburg
	14.53	-	55700	2740-4530	Orleans
SO ₂ = SO+O	15.47	-	50450	2188—4249	Taiwan
	16.45		58600	25003400	Stuttgard

Decomposition of small molecules

Absorption cross section of N₂0 at different temperature at 130.5 nm

Duisburg (Roth P. Kruse T., Burmeister M., Gulati S.K., Natarajan K., Thielen K., Mozzhukin E., Mick H., Giesen A., Takahashi K., Herzler J., Jerig L.)

Tokyo (Matsui H., Koshi M., Ohmori K., Yoshimura M., Kamiya K., Tsuchiya K., Asaba T., Shina H., Miyoshi A., Kamiya K., Lee P.F., Chen W.Y., Wang N.S.,)

cactions stuur		U-AN	⁵ The possibilities of using i	nign-power excimer lasers
Reaction	Temp. range	Ref	a wavelength of 193 nm fo	r photolysis of simple oxyg
C + NO = CN + O	15504050	Stanford	com	pounds
$C + O_2 = CO + O$	1500—4200	Stanford	— —	
C ₂ + NO = products	3150—3950	Duisburg	E T	
$CH_2 + O_2 = CH_2O + O$	1850—2050	Токуо	$f - \sigma $	Fraction of absorbing mole
$CN + O_2 = CNO + O$	2700—3800	Stanford	$J = 0 \frac{1}{h_{11}} \frac{1}{272}$ Inc.	action of absoluting more
	21602750	Duisburg	E IVZ/J	Calculated inhomogeneity of
$\mathrm{CO} + \mathrm{O}_2 = \mathrm{CO}_2 + \mathrm{O}$	1700—3500	Duisburg	— – number of excimer photons per unit	Calculated infomogeneity of
	1000—1400	Hashirimizu	$h\nu$	product mole fraction profi
	12002200	Moscow	area [cm ⁻²], $E = 500 \text{ mJ} \sim 5 \cdot 10^{17}$ photons	depending on the initial opti
$CH_3 + O_2 = CH_3O + O$	1400-2300	Göttingen		thickness g
	1430—2150	Hiroshima	$\sigma = \sigma N_{I} P X_{O} L$ - the initial	
	1622—1840	Токуо	<i>L</i> O optical depth 1.0	0 [] 0
	16002100	Argonne	σ - absorption cross section N_{r} -	
CH + NO = CHN + O	2570—3790	Stanford	$2 \text{absorption cross section, } 1 1_{L}$	
H ₂ S + O ₂ = products	1400—1850	Токуо	2.09×10^{10} [atm ⁻¹ cm ⁻²] Loschmut s	f=0.1
$N_2 + O_2 = N_2 + O + O$	2740—3460	Orleans	number, P - pressure [atm], X_0 -	
$NH_2 + O_2 = NH_2O + O$	1450—2300	Göttingen	mole fraction of the absorbing species \neg	
$NO + N = N_2 + O$	1251—3152	Argonne		f=1.0
	17501360	Duisburg	prior to photolysis, L – length of the $-$ 0.0	1
$NO + NO = N_2O + O$	2600—6300	New York	photolysis volume along the axis of the	
	2700—3500	Tokyo	shock tube.	
	24006200	Duisburg	0.00;	1
$H + O_2 = OH + O$	1700—2500	Stuttgard	If \boldsymbol{g} is small, then the product profile	$g=\sigma N_L X_0 PL$
$OH + O_2 = HO_2 + O$	1950—2100	Argonne	will be uniform	
$OH + OH = H_2O + O$	1288—2033	Brookhaven		
$S + O_2 = SO + O$	1900—2200	Hiroshima	<u>New York</u> (Watt W.S., Myerson A.L., Ross S.	.K., <u>Orleans</u> (Paillard C.E., Abid S., Noudet V. Javey S.)
1	1220—3460	Duisburg	Sutherland J. W., Kuo S.C., Klemm K.B.)	Inaudet v., Javoy S.)
	980—1610	Tokyo	<u>Argonne</u> (Michael J.V., Kumaran S.S., Su M	.C., <u>Hagaoka</u> (Fujii N., Sagawai S.,
$Sn + O_2 = SnO + O$	1300—2250	Duisburg	Lim K.P., Srinivasan N,K., Sutherland J.W.)	Sato T., Nosaka Y., Miyama H.)
$SnO + O_2 = SnO_2 + O$	1700-2300	Duisburg	<u>Göttingen</u> (Wagner H.Gg., Klatt M., Röhrig	Dayton (Lifshitz A., Skinner G.B.,
$SO + O_2 = SO_2 + O$	2570—2980	Duisburg	M., Henning G., Spindler B.)	Wood D.R., Pamidimukkala K.M.)
CH ₄ + N ₂ O = products	1890—3250	Moscow	<u>Hiroshima</u> (Saito K., Ito R., Kakumoro T.,	<u>Stanford</u> (Hanson R.K., Dean A.J.
n-C ₄ H ₉ OH + N ₂ O = products	1890—3250	Moscow	Imamura A., Ueda Y.)	Bowman C.T., Davidson D.F., DiR
CH ₃ OCH ₃ + N ₂ O = products	1890—3250	Moscow	Brookhaven (Sutherland I W Patterson	Taiwan (Lu C.W., Wu Y.J. Lee Y.P
n-C3H7OH + N ₂ O = products	1700-3200	Moscow	P.M., Klemm R.B.)	Zhu R.S., Lin M.C.)
i-C3H7OH + N ₂ O = products	1700-3200	Moscow		· · ·

Hashirimizu (Koike T.)