Equation of state and the topology of hydrogen bonding networks in water at high temperatures and pressures

Kalinichev A $G^{1,2}$

 1 National Research University Higher School of Economics, Myasnitskaya 20, Moscow 101000, Russia

 2 Institut Mines-Télécom Atlantique, 4 Rue Alfred Kastler, Nantes 44300, France

akalinichev@hse.ru

Atomistic computer simulations of water using two different intermolecular potentials for H_2O were carried out for over 50 thermodynamic states covering a very wide range of conditions: $573 \leq T \leq$ 1273 K; $0.02 \leq \rho \leq 1.67$ g/cm³; $0.01 \leq P \leq 10$ GPa. Good agreement of the simulated thermodynamic and structural properties of water with available experimental data assures a reliable quantitative statistical analysis of intermolecular hydrogen bonding between H₂O molecules and the topology of the H-bonding networks formed under these conditions [1]. The effect of temperature on the energetic, geometric, and angular characteristics of H-bonding in water is much more profound than the effect of density along any supercritical isotherm over the entire density range from dilute gas-like $(\approx 0.03 \text{ g/cm}^3)$ to highly compressed liquid-like ($\approx 1.5 \text{ g/cm}^3$) thermodynamic states. Both above and below the H-bonding network percolation threshold, the fractions of water molecules engaged in a certain specific number of H-bonds closely follow the universal binomial distributions as functions of the average number of H-bonds per one H₂O molecule in that state, $\langle n_{\rm HB} \rangle$, as predicted by a simple independent bond theory [2]. The universality of these distributions is preserved even when dynamic criteria of H-bonding lifetimes are additionally applied.

The research was supported by the HSE University Basic Research Program.

[2] Kalinichev A G 2017 J. Mol. Liq. 241 1038-43

^[1] Kalinichev A G 2001 Rev. Mineral. Geochem. 42 83-129