Forcefield testing for molecular dynamics calculation of hydrocarbon phase diagrams

Pisarev V V1,2,3,@ and Valeev B Yu3,2

1 National Research University Higher School of Economics, Myasnitskaya 20, Moscow 101000, Russia
2 Joint Institute for High Temperatures of the Russian Academy of Sciences, Izhorskaya 13 Bldg 2, Moscow 125412, Russia
3 Moscow Institute of Physics and Technology, Institutskiy Pereulok 9, Dolgoprudny, Moscow Region 141700, Russia

@ pisarevvv@gmail.com

Molecular dynamics simulations are performed to calculate vapor–liquid equilibrium of hydrocarbons and their mixtures. Three models are tested: TraPPE-UA united-atom forcefield [1], OPLS-AA [2, 3] and TraPPE-EH [4] all-atom forcefields. The forcefields show good agreement with experimental vaporization curves of pure hydrocarbons. They also reproduce well the composition of liquid phase in binary mixtures as a function of pressure at isotherms, while some discrepancies from experimental data are observed in the saturated vapor compositions. The TraPPE forcefields show better agreement with experimental vapor-liquid equilibrium data than OPLS.

The effects of porosity on mixture phase diagram are qualitatively studied. The saturation curves in slit pores with Lennard-Jones walls are calculated. It is shown that nanopores may shift the coexistence curve. At certain wall-molecule interaction parameters, a significant widening of the pressure range of the retrograde condensation is found.

The study has been funded by the Russian Academic Excellence Project “5-100“.