Results of numerical modeling of quasi-isentropic compression of xenon to a density of 17 g/cm³ with registration by pulsed protonography.

Gamov A.L.^{1,@}, Shuvalova E.V.¹, Bakulina E.A.¹, Blinov I.A.¹, Blikov A.O.¹, Mikhailyukov K.L.¹, Tkachenko B.I.¹, Syrunin M.A.¹ and Mochalov M.A.¹

¹ Federal State Unitary Enterprise "Russian Federal Nuclear Center—All-Russian Research Institute of Experimental Physics, Mira Avenue 37, Sarov, 607188,

[@] al.gamov@physics.msu.ru

Numerical modeling of xenon compression in a small-sized spherical device developed at RFNC-VNIIEF was performed. The shape of the compressed gas was compared with images obtained using pulse protonography. The calculated maximum pressure of xenon, corresponding to the experimentally recorded density $\rho = 17.3 \pm 1.1 \text{ g/cm}^3$, was $P = 770 \pm 40 \text{ GPa}$.