Experimental study of the effect of laser contrast on the duration of an X-ray pulse

Vikhlyaev D.A.^{1,@}, Devyatkov S.D.¹, Yemelyanov A.V.¹, Zamuraev D.O.¹, Kovaleva S.F.¹, Nosulenko D.S.¹, Tishchenko A.S.¹, Fedorov N.A.¹ and Shamraev A.L.¹

The temporal characteristics of X-ray radiation generated in the laser plasma of aluminum targets in the energy range of 1, 5÷2, 1 keV were investigated on a femtosecond laser setup. The quanta with the required energy were separated using a total external reflection spherical mirror and an absorption filter. An X-ray streak camera with a picosecond time resolution was used as a recording device. A saturable absorber and plasma mirrors were used to increase the contrast of the laser pulse. Measured X-ray flash duration is 22 ± 7 ps without using a saturable absorber and plasma mirrors. The use of a saturable absorber reduces it to 11 ± 3 ps, and when both techniques are applied simultaneously the duration does not exceed 7 ps.

¹ Federal State Unitary Enterprise "Russian Federal Nuclear Center—Academician Zababakhin All-Russian Research Institute of Technical Physics, Vasilieva 13, Snezhinsk, 456770, None

[@] Vikhlyaev@mail.ru