Non-lineartity in pulse cathodoluminescence and radioluminescence due to interactions between electronic excitations at their high densities

Belov M. V.^{1,@}, Kozlov V. A.¹, Pestovskii N. V.¹, Savinov S. Yu.¹, Tskhay V. S.¹, Vlasov V. I.², Zagumennyi A. I.², Zavartsev Yu. D.² and Zavertyaev M. V.¹

¹ Lebedev Physical Institute of the Russian Academy of Sciences, Leninsky Avenue 53, Moscow, 119991, None ² Puelly area Convert Institute of the Pression Acad

² Prokhorov General Physics Institute of the Russian Acad -emy of Sciences, Vavilova 38, Moscow, 119991, None

[@] pestovskii@lebedev.ru

Previously we proposed an experimental method for studies the scintillation non-linearity of wide-gap materials based on analysis of pulse cathodoluminescence (PCL) spectral and kinetic properties on parameters of an exciting electron beam [1]. In particular, this method allows to investigate the dependence of PCL parameters on the volume density of electronic excitations (EEs) created by the beam [1,2]. Using this method, we estimated the EE densities produced by an electron beam generated by a RADAN-EKSPERT accelerator [3,4] and the dependence of PCL parameters on the EE densities for different oxides and fluorides. For some materials, these results were compared with the data on radioluminescence non-linearity. Physical processes inducing the scintillation non-linearity at EE densities of ~ 10^{18} cm⁻³ and higher are discussed. The work is supported by Russian science foundation (project 19-79-30086-P).

- [1] Belov M V e a 2021 Journal of Applied Physics 130 233101
- [2] Belov M V e a 2025 Journal of Luminescence 277 120919
- [3] Afanas'ev V N e a 2005 Instrum. Exp. Tech. 48 641-645
- [4] Solomonov V I e a 2006 Laser physics 16 126–129