Observation of 18 MeV electron beam spot dynamics and accompanying disassemble of target in double pulse mode of LIA

Trunev Yu.A.^{1,@}, Atlukhanov M.G.¹, Burdakov A.V.¹, Danilov V.V.¹, Kurkuchekov V.V.¹, Popov S.S.¹, Sandalov E.S.¹, Skovorodin D.I.¹, Zhivankov K.I.¹, Akhmetov A.R.², Don A.R.², Khrenkov S.D.², Kolesnikov P.A.², Politov V.Yu.², Protas R.V.², Penzin I.V.² and Zhuravlev I.A.²

 ¹ Budker Institute of Nuclear Physics of the Siberian Branch of the Russian Academy of Sciences, Lavrentyev Avenue 11, Novosibirsk, 630090, None
² Federal State Unitary Enterprise "Russian Federal Nuclear Center—Academician Zababakhin All-Russian Research Institute of Technical Physics, Vasilieva 13, Snezhinsk, 456770, None

[@] yu.a.trunev@inp.nsk.su

This report describes well known problem of beam-target interaction in multi pulse mode of linear induction accelerator (LIA) [1, 2]. Electron beam (18 MeV, 1.5 kA, 150 ns, double pulse) focused into millimeters spot size on a tantalum plate with a thickness of 1 to 3 mm was studied. The basic diagnostics are described, especially the multi-pixel detector [3] based on a scintillation fiber (decay times 3 ns). First experimental data are considered and hypothesis of beam-plasma interaction is discussed.

- Jaworski M A 2021 Image station use examples from darht [slides] Tech. rep. Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
- [2] Brandes A M 2024 Darht multi-pulse test line (mptl) ecr Tech. rep. Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
- [3] Trunev Y A, Skovorodin D, Burdakov A, Popov S, Kolesnikov P, Danilov V, Kurkuchekov V, Atlukhanov M, Kulenko I, Arakcheev A et al. 2020 IEEE Transactions on Plasma Science 48 2125–2131