Enhancement of spin-orbit coupling in doped graphene

Akhmatov Z.A.^{1,2,3,@} and Akhmatov Z.A.^{1,3,4}

- ¹ Institute of Applied Mathematics and Automation of the Kabardino-Balkar Scientific Center of the Russian Academy of Sciences, Shortanova 89a, Nalchik, 360000, None
- ² Institute for Nuclear Research of the Russian Academy of Science, Prospekt 60-letiya Oktyabrya 7a, Moscow, 117312, None
- 3 Kabardino-Balkarian State University, Chernyshevskogo Street 173, Nalchik, 360004. None
- ⁴ Vladikavkaz Scientific Centre of the Russian Academy of Sciences, Markus 22, Vladikavkaz, 362027, None

@

Using first-principles calculations, the possibility of enhancing the SOC in graphene due to its doping by cadmium and tellurium atoms has been shown. For the CdC_{15} structure, the spin splitting value was $E_{SOC}=0.23~eV$. Co-doping of graphene by cadmium and tellurium leads to a lower spin-orbit splitting value $E_{SOC}=0.08~eV$. At a low concentration of doped atoms, as in the case of the CdC_{31} structure, splitting of graphene energy levels is not observed. In conclusion, we note that the enhancement of SOC in graphene and a sufficiently large band gap induced by doped atoms is an important factor for the creation of a 2D topological insulator based on graphene operating at room temperatures [1].

Acknowledgments

The research was funded by the Russian Science Foundation (project No. 24-22-20102).

[1] Akhmatov Z A 2024 Carbon 230 119571