A comparative study of some scaling and traditional models describing the densities of the liquid and the gas on the SF_6 saturation line

Ustyuzhanin E.E.^{1,@}, Rykov S.V.², Kudryavtseva I.V.², Rykov V.A.² and Ochkov V.F.¹

 1 National Research University Moscow Power Engineering Institute, Krasnokazarmennaya 14, Moscow, 111250, Russia

² ITMO University, Kronvergskiy 49, Saint-Petersburg, 197101, None

[@] evgust@gmail.com

In this report we consider a number of objects; among them there are: (a) the liquid (ρ_l) and the gas (ρ_q) densities on the saturation line of SF₆, (b) the average diameter (f_d) , the order parameter (f_s) , (c) $\Delta \rho_l = (\rho_l - \rho_c)/\rho_c$, $\Delta \rho_g = (\rho_g - \rho_c)/\rho_c$, (d) thermodynamic complexes $Z_l = \Delta \rho_l / f_s$, $Z_q = |\Delta \rho_q| / f_s$. One of the purposes of our study is to get numerical data on complexes $(Z_l, Z_q, ur = f_d/f_s)$ etc.) in the range $(2 \times 10^{-8} < \tau < 0.3)$. In accordance with the goals, the authors consider tasks I...III. Due to tasks I, we are generating the initial array (SA) on the bases of experimental (ρ_l, ρ_q, T) data in the range $(2\times 10^{-8}<\tau<0.3)$ (step 1). In the second step, we are building model A $(f_s = B_{s0}\tau^{\beta} + B_{s1}\tau^{\beta+\Delta} + ...)$ and model B $(f_d =$ $B_{d0}\tau^{2\beta} + B_{d1}\tau^{1-\alpha} + \ldots$, which work in the range $(2 \times 10^{-8} < \tau < 0.3)$ satisfactorily and follow to the scaling theory of critical phenomena (ST). In the frame of tasks II, we are investigating the equations C $(Z_l = 1 + ur = 1 + ur_{bas} + (B_{d1}/B_{s0})\tau^{1-\alpha-\beta} + \dots, Z_g = 1 - ur = 1$ $1 - ur_{bas} - (B_{d1}/B_{s0})\tau^{1-\alpha-\beta} + \ldots), \text{ here } ur_{bas} = (B_{d0}/B_{s0})\tau^{\beta}.$ Using the SA array and C models, we calculate (Z_l, Z_g, ur_{bas}) data, experimental $(Z_{l exp}, Z_{q exp}, ur_{bas})$ data and construct a liquid as well as gasose branches of the binodal in these coordinates. In accordance with tasks III empirical equations $(Z_{l eff}(x_1, x_2, \tau))$, $Z_{q eff}(x_1, x_2, \tau)$ is being developed (step 1). In the second step, we determine (Z_l, Z_q, ur_{bas}) data, which are connected with some literature (ρ_l, ρ_q, T) values.